Survivin is responsible for cancer progression and drug resistance in many types of cancer. YM155 selectively suppresses the expression of survivin and induces apoptosis in cancer cells in vitro and in vivo. However, the mechanism underlying these effects of YM155 is unknown. Here, we show that a transcription factor, interleukin enhancer-binding factor 3 (ILF3)/NF110, is a direct binding target of YM155. The enhanced survivin promoter activity by overexpression of ILF3/NF110 was attenuated by YM155 in a concentration-dependent manner, suggesting that ILF3/NF110 is the physiological target through which YM155 mediates survivin suppression. The results also show that the unique C-terminal region of ILF3/NF110 is important for promoting survivin expression and for high affinity binding to YM155.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3394938 | PMC |
http://dx.doi.org/10.1074/mcp.M111.013243 | DOI Listing |
Biochim Biophys Acta Mol Basis Dis
January 2025
Center for Mathematical Modeling and Data Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan. Electronic address:
Drug resistance often stems from drug-tolerant persister (DTP) cells in cancer. These cells arise from various lineages and exhibit complex dynamics. However, effectively targeting DTP cells remains challenging.
View Article and Find Full Text PDFLymphatics
June 2024
The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA.
CLL B cells express elevated pro-survival BCL2, and its selective inhibitor, venetoclax, significantly reduces leukemic cell load, leading to clinical remission. Nonetheless, relapses occur. This study evaluates the hypothesis that progressively diminished BCL2 protein in cycling CLL cells within patient lymph node niches contributes to relapse.
View Article and Find Full Text PDFBr J Pharmacol
November 2024
Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
Background And Purpose: Prolonged survival of neutrophils is essential for determining the progression and severity of inflammatory and immune-mediated disorders, including gouty arthritis. Survivin, an anti-apoptotic molecule, has been described as a regulator of cell survival. This study aims to examine the effects of YM155 treatment, a survivin selective suppressant, in maintaining neutrophil survival in vitro and in vivo experimental settings of neutrophilic inflammation.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2024
Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200000, China. Electronic address:
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most prevalent genetic disorder affecting the kidneys. Understanding epigenetic regulatory mechanisms and the role of microRNAs (miRNAs) is crucial for developing therapeutic interventions. Two mRNA datasets (GSE7869 and GSE35831) and miRNA expression data (GSE133530) from ADPKD patients were used to find differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs), with a focus on genes regulated by hub transcription factors (TFs) and their target genes.
View Article and Find Full Text PDFAm J Cancer Res
September 2024
Liver Research Center, Chang Gung Memorial Hospital Linkou, Taoyuan 330, Taiwan.
Glioblastoma (GBM) is the most malignant brain tumor frequently characterized by a hypoxic microenvironment. In this investigation, we unveiled unprecedented role of Ribonuclease 4 (RNASE4) in GBM pathogenesis through integrative methodologies. Leveraging The Cancer Genome Atlas (TCGA) dataset and clinical specimens from normal brain tissues, low- and high-grade gliomas, alongside rigorous and functional analyses, we identified a consistent upregulation of RNASE4 correlating with advanced GBM pathological stages and poor clinical survival outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!