AI Article Synopsis

  • Patients with peripheral vascular disease (PVD) undergoing hemodialysis (HD) have a higher mortality risk and may experience altered blood pressure control.
  • The study aimed to explore the relationship between PVD and changes in peripheral resistance during volume depletion from HD, as well as the effects of HD on pulse pressure (PP).
  • Findings indicated that PVD patients showed greater diastolic blood pressure variability and reduced baroreflex sensitivity compared to those without PVD, suggesting an interplay of vascular disease and autonomic control affecting blood pressure responses during HD treatment.

Article Abstract

Hemodialysis (HD) patients with peripheral vascular disease (PVD) are at higher risk of mortality. The main objectives of this work were to investigate the hypothesis of an association between the PVD and an altered control system on peripheral resistance in response to volume depletion induced by HD treatment; and to investigate whether HD induced increase of pulse pressure (PP) is associated with PVD. Continuous blood pressure (BP) was recorded during HD treatment at the beginning and at the end of HD. The overhydration condition was evaluated by means of whole body bioimpedance spectroscopy, measured before each HD treatment. BP variability, heart rate variability and baroreflex sensitivity were then analyzed. Patients affected by PVD reported a prevalence of peripheral local control as shown by higher values of very low frequency in diastolic blood pressure (DBP) variability and a reduced cardiac baroreflex with respect to patients not affected by this pathology. HD treatment induced a significant increase of PP and LF% in DBP series in PVD patients only. Our results suggested that differences in BP variability and PP changes could be related not only to an underlying vascular disease, but also to an alteration in autonomic control.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0967-3334/33/4/667DOI Listing

Publication Analysis

Top Keywords

blood pressure
12
vascular disease
12
autonomic control
8
peripheral vascular
8
induced increase
8
variability
5
patients
5
pvd
5
pressure variability
4
variability cardiovascular
4

Similar Publications

Introduction: Hypertension is among the most significant non-communicable public health issues worldwide. High blood pressure, or hypertension, has been associated with severe health consequences, including death, aneurysms, stroke, chronic renal disease, eye damage, heart attack, heart failure, peripheral artery disease, and vascular dementia. Consequently, this study aimed to investigate the predictors linked to survival time and the progression of blood pressure measurements in hypertensive patients.

View Article and Find Full Text PDF

Background: The prevalence of chronic kidney disease (CKD) is estimated to be about 13.4% worldwide. Studies have shown that CKD accounts for up to 2% of the health cost burden.

View Article and Find Full Text PDF

The current research introduces a model-free ultra-local model (MFULM) controller that utilizes the multi-agent on-policy reinforcement learning (MAOPRL) technique for remotely regulating blood pressure through precise drug dosing in a closed-loop system. Within the closed-loop system, there exists a MFULM controller, an observer, and an intelligent MAOPRL algorithm. Initially, a flexible MFULM controller is created to make adjustments to blood pressure and medication dosages.

View Article and Find Full Text PDF

Purpose Of Review: The review aims to address the knowledge gap and promote the widespread adoption of quinoa as a functional food for improving metabolic health. By presenting a comprehensive overview of its nutritional profile and bioactive components, the review aims to increase consumers' awareness of the potential therapeutic benefits of incorporating quinoa into diets.

Recent Findings: Recent studies have highlighted the diverse range of bioactive compounds in quinoa, such as phytosterols, saponins, phenolic acids, phytoecdysteroids, and betalains.

View Article and Find Full Text PDF

Olfactory receptors (ORs), taste receptors and opsins are well-known for their pivotal roles in mediating the senses of smell, taste and sight, respectively. However, in the past two decades, research has shown that these sensory receptors also regulate physiological processes in a variety of non-sensory tissues. Although ORs, taste receptors and opsins have all been shown to have physiological roles beyond their traditional locations, most work in the kidney has focused on ORs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!