Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An off-axis null Ronchi test is presented to measure the three-dimensional (3D) shape of a large-aperture aspheric mirror. The method designs curved fringe patterns as null sinusoidal gratings by means of phase information and ray tracing. In the process of measurement, the curved fringe patterns are displayed on a transmission-type liquid crystal display (T-LCD) screen, and a CCD camera records the fringe patterns containing the information of deviations of the mirror. The slopes of the deviations of the mirror are obtained by using the recorded fringe patterns. The deviations are restored by integrating, and then the 3D shape of the mirror can be reconstructed. Compared with the classical null Ronchi test, the method can provide enough measured data points and avoid the jagged edges of bands on the null gratings. Moreover, the method can conveniently change period and direction of the curved fringes and accurately control phase shifting. Computer simulations and a preliminary experiment are presented to show the performance of the method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.51.001276 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!