Introduction: The population of patients undergoing renal transplantation is considered at highrisk for developing obesity and changes in lipid and glucose metabolism, due to the use of immunosuppressive drugs and increased food freedom in the post-transplant period.
Objective: This study was designed to assess the prevalence of metabolic syndrome in renal transplant recipients and to identify factors associated with its occurrence.
Methods: A cross-sectional study was performed in renal transplant patients, with more than six months of follow-up. The metabolic syndrome was diagnosed according to the criteria of the National Cholesterol Education Program Adult Treatment Panel III.
Results: Among the 87 patients enrolled, 39 (44.8%) presented the phenotype of metabolic syndrome. The mean age of the patients was 43.5 ± 12.1 years-old, with a predominance of male (69.0%) and white (66.7%). The mean and median times of post transplant follow-up were 64.2 ± 49.4 and 56 months, respectively. All the 12 patients who developed post-transplant diabetes mellitus also met the criteria for metabolic syndrome, which compromised the inclusion of this variable in the logistic regression. In the univariate analysis, patients with metabolic syndrome had higher mean age (p = 0.008), higher median blood level of cyclosporine (p = 0.021), higher prevalence of history of coronary disease (p = 0.023), and they were more frequent users of beta (p = 0.011) and calcium- channel blockers (p = 0.039). In the multivariate analysis, age (HR = 1.06; 95% CI=1.01-1.11, p=0.006) and use of beta-blockers (HR = 4.02; 95% CI = 1.41 - 11.4, p = 0.009) were associated with increased risk of metabolic syndrome.
Conclusion: Metabolic syndrome was highly prevalent in the population of renal trans- plant recipients studied, and it was associated with older age, use of beta-blockers, and post-transplant diabetes mellitus.
Download full-text PDF |
Source |
---|
Diabetes Obes Metab
January 2025
Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China.
Metabolic syndrome-related diseases frequently involve disturbances in skeletal muscle lipid metabolism. The accumulation of lipid metabolites, lipid-induced mitochondrial stress in skeletal muscle cells, as well as the inflammation of adjacent adipose tissue, are associated with the development of insulin resistance and metabolic dysfunction. Consequently, when antidiabetic medications are used to treat various chronic conditions related to hyperglycaemia, the impact on skeletal muscle lipid metabolism should not be overlooked.
View Article and Find Full Text PDFJ Cell Physiol
January 2025
Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.
Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.
View Article and Find Full Text PDFNon-alcoholic fatty liver disease (NAFLD) is a chronic condition characterized by hepatic steatosis in the absence of significant alcohol consumption and is increasingly recognized as the hepatic manifestation of metabolic syndrome (MetS). This review aims to explore the molecular mechanisms underlying the interaction between NAFLD, insulin resistance (IR), and MetS, with a focus on identifying therapeutic targets. A comprehensive review of existing literature on NAFLD, IR, and MetS was conducted.
View Article and Find Full Text PDFJGH Open
January 2025
Division of Research and Development for Minimally Invasive Treatment Cancer Center, Keio University School of Medicine Tokyo Japan.
Background And Aim: It is important for endoscopist to diagnose the lesion redness. In this study, we focused on the redness of duodenal bulb. We objectively analyzed the changes in redness of the duodenal bulb using linked color imaging (LCI) with chromatic indicators.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
Nuclear receptor corepressor (NCoR1) interacts with various nuclear receptors and regulates the anabolism and catabolism of lipids. An imbalance in lipid/energy homeostasis is also an important factor in obesity and metabolic syndrome development. In this study, we found that the deletion of NCoR1 in intestinal epithelial cells (IECs) mainly activated the nuclear receptor PPAR and attenuated metabolic syndrome by stimulating thermogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!