An F2 cross between Duroc and Large White pigs was carried out in order to detect quantitative trait loci (QTL) for 11 meat quality traits (L*, a* and b* Minolta coordinates and water-holding capacity (WHC) of two ham muscles, ultimate pH of two ham and one loin muscles), 13 production traits (birth weight, average daily gain during post-weaning and fattening periods, carcass fat depths at three locations, estimated lean meat content, carcass length and weights of five carcass cuts) and three stress hormone-level traits (cortisol, adrenaline and noradrenaline). Animals from the three generations of the experimental design (including 456 F2 pigs) were genotyped for 91 microsatellite markers covering all the autosomes. A total of 56 QTL were detected: 49 reached the chromosome-wide level (suggestive QTL with a maximal probability of 0.05) and seven were significant at the genome-wide level (with a probability varying from 6 × 10(-4) to 3 × 10(-3)). Twenty suggestive QTL were identified for ultimate pH, colour measurements and WHC on chromosome (SSC) 5, 6, 7, 8, 9, 11, 13, 14, 15 and 17. For production traits, 33 QTL were detected on all autosomes except SSC6, 8 and 9. Seven of these QTL, located on SSC2, 3, 10, 13, 16 and 17, exceeded the genome-wide significance threshold. Finally, three QTL were identified for levels of stress hormones: a QTL for cortisol level on SSC7 in the cortisol-binding globulin gene region, a QTL for adrenaline level on SSC10 and a QTL for noradrenaline level on SSC13. Among all the detected QTL, seven are described for the first time: a QTL for ultimate pH measurement on SSC5, two QTL affecting birth weight on SSC2 and 10, two QTL for growth rate on SSC15 (during fattening) and 17 (during post-weaning) and two QTL affecting the adrenaline and noradrenaline levels. For each QTL, only one to five of the six F1 sires were found to be heterozygous. It means that all QTL are segregating in at least one of the founder populations used in this study. These results suggest that both meat quality and production traits can be improved in purebred Duroc and Large White pigs through marker-assisted selection. It is of particular interest for meat quality traits, which are difficult to include in classical selection programmes.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1751731110001722DOI Listing

Publication Analysis

Top Keywords

qtl
17
meat quality
16
production traits
16
duroc large
12
large white
12
white pigs
12
quantitative trait
8
trait loci
8
stress hormones
8
quality traits
8

Similar Publications

Using Quantitative Trait Locus Mapping and Genomic Resources to Improve Breeding Precision in Peaches: Current Insights and Future Prospects.

Plants (Basel)

January 2025

The Key Laboratory of the Gene Resources Evaluation and Utilization of Horticultural Crop [Fruit Tree], Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.

Modern breeding technologies and the development of quantitative trait locus (QTL) mapping have brought about a new era in peach breeding. This study examines the complex genetic structure that underlies the morphology of peach fruits, paying special attention to the interaction between genome editing, genomic selection, and marker-assisted selection. Breeders now have access to precise tools that enhance crop resilience, productivity, and quality, facilitated by QTL mapping, which has significantly advanced our understanding of the genetic determinants underlying essential traits such as fruit shape, size, and firmness.

View Article and Find Full Text PDF

is a member of the cruciferous family with rich glucosinolate (GSL) content, particularly glucobrassicin (3-indolylmethyl glucosinolate, I3M), that can be metabolized into indole-3-carbinol (I3C), a compound with promising anticancer properties. To unravel the genetic mechanism influencing I3C content in rapeseed seedlings, a comprehensive study was undertaken with a doubled haploid (DH) population. By quantitative trait loci (QTL) mapping, seven QTL that were located on A01, A07, and C04 were identified, with the most significant contribution to phenotypic variation observed on chromosome A07 (11.

View Article and Find Full Text PDF

Construction of a High-Density Genetic Linkage Map and QTL Mapping for Stem Rot Resistance in Passion Fruit ( Sims).

Genes (Basel)

January 2025

Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.

Background: The passion fruit ( Sims) is a diploid plant (2n = 2x = 18) and is a perennial scrambling vine in Southern China. However, the occurrence and spread of stem rot in passion fruit severely impact its yield and quality.

Methods: In this study, we re-sequenced a BCF population consisting of 158 individuals using whole-genome resequencing.

View Article and Find Full Text PDF

Background/objectives: Cold stress poses a significant threat to Asian rice cultivation, disrupting important physiological processes crucial for seedling establishment and overall plant growth. It is, thus, crucial to elucidate genetic pathways involved in cold stress tolerance response mechanisms.

Methods: We mapped , a ()-type homolog of rice, to a low-temperature seedling survivability (LTSS) QTL and used genomics, molecular genetics, and physiological assays to assess its role in plant resilience against low-temperature stress.

View Article and Find Full Text PDF

Background/objectives: Cowpea is an important legume crop in sub-Saharan Africa (SSA) and beyond. However, access to phosphorus (P), a critical element for plant growth and development, is a significant constraint in SSA. Thus, it is essential to have high P-use efficiency varieties to achieve increased yields in environments where little-to- no phosphate fertilizers are applied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!