A new luminescent ionic liquid crystal, called Ipz-2, has been synthesised and its mesophase behaviour and also at the air-liquid interface has been studied and compared with Ipz, another ionic pyrazole derivative, with a similar molecular structure, previously studied. The X-ray diffraction pattern shows that Ipz-2 exhibits hexagonal columnar mesomorphism, while Ipz adopts lamellar mesophases. Langmuir films of both compounds are flat and homogeneous at large areas per molecule, but create different supramolecular structures under further compression. Ipz-2 Langmuir films have been transferred onto solid substrates, and Atomic Force Microscopy (AFM) images of the Langmuir-Blodgett films have shown that large columnar structures hundreds of nm in diameter are formed on top of the initial monolayer, in contrast with well-defined trilayer LB films obtained for Ipz. Our results show that Ipz-2 has a tendency to stack in columnar arrangements both in liquid crystalline bulk and in Langmuir and Langmuir-Blodgett films.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2012.02.049 | DOI Listing |
Adv Sci (Weinh)
January 2025
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China.
High birefringence nematic liquid crystals are particularly demanded for adaptive optics applications in the infrared spectrum because it enable a thinner cell gap for achieving fast response time and improved diffraction efficiency. The emerging ferroelectric nematic liquid crystals have attracted widespread interest in soft matter due to their unique combination of ferroelectricity and fluidity. However, the birefringence, which is one of the most important optical parameters in electro-optic devices, is not large enough (<0.
View Article and Find Full Text PDFAdv Mater
January 2025
Institute of Materials Physics, University of Münster, Wilhelm-Klemm-Str. 10, 48149, Münster, Germany.
As a phase change material (PCM), antimony exhibits a set of desirable properties that make it an interesting candidate for photonic memory applications. These include a large optical contrast between crystalline and amorphous solid states over a wide wavelength range. Switching between the states is possible on nanosecond timescales by applying short heating pulses.
View Article and Find Full Text PDFSci Total Environ
January 2025
Tyndall Centre for Climate Change Research, School of Engineering, 5th Floor, Engineering A, University of Manchester, Manchester M13 9PL, UK. Electronic address:
In Santiago, Chile, 315,000 liquid crystal display (LCD) monitors are discarded annually. Of this amount, the formal sector of refurbishment and recycling manages only 5 %, creating the conditions for the emergence of informal management systems. This study provides the first comprehensive environmental and circularity assessment of monitor treatment across multiple impact categories, identifying trade-offs associated with formal and informal operations.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China.
Liquid crystal monomers (LCMs) of different chemical structures were widely detected in various environmental matrices. However, their health risk evaluation is lacking. Herein, three representative LCMs were selected from 74 LCM candidates upon literature review and acute cytotoxicity evaluation, then were exposed to the three LCMs for 42 days at doses of 0.
View Article and Find Full Text PDFACS Mater Au
January 2025
Liquid Crystal Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India.
Polymer-dispersed liquid crystals (PDLCs) stand at the intersection of polymer science and liquid crystal technology, offering a unique blend of optical versatility and mechanical durability. These composite materials are composed of droplets of liquid crystals interspersed in a matrix of polymeric materials, harnessing the optical properties of liquid crystals while benefiting from the structural integrity of polymers. The responsiveness of LCs combined with the mechanical rigidity of polymers make polymer/LC composites-where the polymer network or matrix is used to stabilize and modify the LC phase-extremely important for scientists developing novel adaptive optical devices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!