Today, different analytical methods are used by different laboratories to quantify androstenone in fat tissue. This study shows the comparison of methods used routinely in different laboratories for androstenone quantification: Time-resolved fluoroimmunoassay in Norwegian School of Veterinary Science (NSVS; Norway), gas chromatography coupled to mass spectrometry in Co-operative Central Laboratory (CCL; The Netherlands) and in Institut de Recerca i Tecnologia Agroalimentàries (IRTA; Spain), and high-pressure liquid chromatography in Agroscope Liebefeld-Posieux Research Station (ALP; Switzerland). In a first trial, a set of adipose tissue (AT) samples from 53 entire males was sent to CCL, IRTA and NSVS for determination of androstenone concentration. The average androstenone concentration (s.d.) was 2.47 (2.10) μg/g at NSVS, 1.31 (0.98) μg/g at CCL and 0.62 (0.52) μg/g at IRTA. Despite the large differences in absolute values, inter-laboratory correlations were high, ranging from 0.82 to 0.92. A closer look showed differences in the preparation step. Indeed, different matrices were used for the analysis: pure fat at NSVS, melted fat at CCL and AT at IRTA. A second trial was organised in order to circumvent the differences in sample preparation. Back fat samples from 10 entire males were lyophilised at the ALP labortary in Switzerland and were sent to the other laboratories for androstenone concentration measurement. The average concentration (s.d.) of androstenone in the freeze-dried AT samples was 0.87 (0.52), 1.03 (0.55), 0.84 (0.46) and 0.99 (0.67) μg/g at NSVS, CCL, IRTA and ALP, respectively, and the pairwise correlations between laboratories ranged from 0.92 to 0.97. Thus, this study shows the influence of the different sample preparation protocols, leading to major differences in the results, although still allowing high inter-laboratory correlations. The results further highlight the need for method standardisation and inter-laboratory ring tests for the determination of androstenone. This standardisation is especially relevant when deriving thresholds of consumer acceptance, whereas the ranking of animals for breeding purposes will be less affected due to the high correlations between methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S1751731111000553 | DOI Listing |
Microbiome
April 2018
IRBio and Department of Evolutionary Biology, Ecology and Environmental Science, Faculty of Biology, University of Barcelona, Avenida Diagonal 643, 08028, Barcelona, Spain.
Background: Tetrapods do not express hydrolases for cellulose and hemicellulose assimilation, and hence, the independent acquisition of herbivory required the establishment of new endosymbiotic relationships between tetrapods and microbes. Green turtles (Chelonia mydas) are one of the three groups of marine tetrapods with an herbivorous diet and which acquire it after several years consuming pelagic animals. We characterized the microbiota present in the feces and rectum of 24 young wild and captive green turtles from the coastal waters of Brazil, with curved carapace length ranging from 31.
View Article and Find Full Text PDFSci Total Environ
April 2018
Grup de Mineralogia Aplicada i Geoquímica de Fluids, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), c/Martí Franquès s/n, 08028 Barcelona, Spain.
Field-derived anoxic microcosms were used to characterize chloroform (CF) and carbon tetrachloride (CT) natural attenuation to compare it with biostimulation scenarios in which vitamin B was added (B/pollutant ratio of 0.01 and 0.1) by means of by-products, carbon and chlorine compound-specific stable-isotope analysis, and the active microbial community through 16S rRNA MiSeq high-throughput sequencing.
View Article and Find Full Text PDFAutophagy
October 2016
kb Emory University, School of Medicine, Department of Microbiology and Immunology , Atlanta , GA , USA.
Animal
August 2011
Chemical Department, Agroscope Liebefeld-Posieux Research Station ALP, Tioleyre 4, 1725 Posieux, Switzerland.
Today, different analytical methods are used by different laboratories to quantify androstenone in fat tissue. This study shows the comparison of methods used routinely in different laboratories for androstenone quantification: Time-resolved fluoroimmunoassay in Norwegian School of Veterinary Science (NSVS; Norway), gas chromatography coupled to mass spectrometry in Co-operative Central Laboratory (CCL; The Netherlands) and in Institut de Recerca i Tecnologia Agroalimentàries (IRTA; Spain), and high-pressure liquid chromatography in Agroscope Liebefeld-Posieux Research Station (ALP; Switzerland). In a first trial, a set of adipose tissue (AT) samples from 53 entire males was sent to CCL, IRTA and NSVS for determination of androstenone concentration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!