Bisphosphonates (BPs) are a group of well-established drugs that are applied in the development of metabolic bone disorder-related therapies. There is increasing interest also in the application of BPs in the context of bone tissue engineering, which is the topic of this review, in which an extensive overview of published studies on the development and applications of BPs-based strategies for bone regeneration is provided with special focus on the rationale for the use of different BPs in three-dimensional (3D) bone tissue scaffolds. The different alternatives that are investigated to address the delivery and sustained release of these therapeutic drugs in the nearby tissues are comprehensively discussed, and the most significant published approaches on bisphosphonate-conjugated drugs in multifunctional 3D scaffolds as well as the role of BPs within coatings for the improved fixation of orthopedic implants are presented and critically evaluated. Finally, the authors' views regarding the remaining challenges in the fields and directions for future research efforts are highlighted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3458621 | PMC |
http://dx.doi.org/10.1089/ten.TEB.2011.0737 | DOI Listing |
Ann Biomed Eng
January 2025
Department of Biomedical Engineering, Yildiz Technical University, Esenler, 34220, Istanbul, Türkiye.
Titanium (Ti)-based materials are favored for hard tissue applications, yet their bioinertness limits their success. This study hypothesizes that functionalizing Ti materials with chitosan nano/microspheres and calcitriol (VD) will enhance their bioactivity by improving cellular activities and mineralization. To test this, chitosan particles were applied uniformly onto Ti surfaces using electrophoretic deposition (EPD) at 20 V for 3 minutes.
View Article and Find Full Text PDFEur J Orthop Surg Traumatol
January 2025
Cedars-Sinai Medical Centre, Los Angeles, USA.
Objective: Accurate rotational reduction following tibial shaft fracture fixation is absent in up to 36% of cases yet may be critical for lower extremity biomechanics. The objective of this cadaveric study was to compare the results of freehand methods of reduction with software-assisted reduction.
Methods: Four fellowship-trained orthopaedic trauma surgeons attempted rotational correction in a cadaveric model with fluoroscopic assistance (without radiographic visualization of the fracture site) using (1) their method of choice (MoC) and (2) software assistance (SA).
Inflamm Res
January 2025
Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China.
Background: One of the etiologic components of degenerative spinal illnesses is intervertebral disc degeneration (IVDD), and the accompanying lower back pain is progressively turning into a significant public health problem. Important pathologic characteristics of IVDD include inflammation and acidic microenvironment, albeit it is unclear how these factors contribute to the disease.
Purpose: To clarify the functions of inflammation and the acidic environment in IVDD, identify the critical connections facilitating glycolytic crosstalk and nucleus pulposus cells (NPCs) pyroptosis, and offer novel approaches to IVDD prevention and therapy.
Sci Rep
January 2025
Department of Orthopaedic Surgery, School of Medicine, International University of Health and Welfare, 4-3, Kozunomori, Narita, Chiba, 286-8686, Japan.
The occurrence of diseases characterized by irregular spinal alignment, such as kyphosis, lordosis, scoliosis, and dropped head syndrome (DHS) is increasing, particularly among older adults. DHS is characterized by an excessive forward tilt of the head and neck, causing the head to droop. Although it is believed that muscle activity plays a role in both the onset and treatment of DHS, the underlying mechanisms remain unclear.
View Article and Find Full Text PDFBone Res
January 2025
Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
Circadian rhythm is ubiquitous in nature. Circadian clock genes such as Bmal1 and Clock form a multi-level transcription-translation feedback network, and regulate a variety of physiological and pathological processes, including bone and cartilage metabolism. Deletion of the core clock gene Bmal1 leads to pathological bone alterations, while the phenotypes are not consistent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!