The advancement in gene therapy relies upon the discovery of safe and efficient delivery agents and methods. In this study, we report the design and synthesis of a cationic bolaamphiphile as a non-viral gene delivery agent. The bolaamphiphile is composed of 1,12-diaminododecane as the central hydrophobic unit linked to the hydrophilic pentaethylenehexamine via thioether-based glycidyl units. This bolaamphiphile condensed DNA efficiently into nanoparticles of sizes around 150-200 nm with positive zeta potential of 30-35 mV. In vitro luciferase expression levels and percentage of GFP expressing cells induced by the bolaamphiphile/DNA complexes were higher than those mediated by the often used "golden" standard of non-viral systems, polyethyleneimine (PEI, branched, 25 kDa) at its optimal N/P ratio in HEK293, HepG2, NIH3T3, HeLa and 4T1 cells. In vitro cytotoxicity testing revealed that the DNA complexes fabricated from this cationic bolaamphiphile displayed marginal toxicity towards all the cell lines tested. In addition, in vivo transfection studies carried out in a 4T1 mouse breast cancer model showed that the cationic bolaamphiphile delivered DNA more efficiently than PEI. This cationic bolaamphiphile may make a promising gene delivery vector for future gene therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2012.02.067DOI Listing

Publication Analysis

Top Keywords

cationic bolaamphiphile
20
gene delivery
12
bolaamphiphile non-viral
8
non-viral gene
8
gene therapy
8
dna efficiently
8
bolaamphiphile
7
gene
5
diaminododecane-based cationic
4
delivery
4

Similar Publications

Optimal Method to Realize Quantitative Detection of 1D and 2D Nanoassemblies Based on AIE-Active Bolaamphiphilic Molecules.

Langmuir

January 2025

Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.

Controllable transformation between the bolaamphiphilic molecule assemblies with different morphological nanostructures represents an exciting new direction for materials. However, there are still significant challenges for the quantitative detection and real-time monitoring of a controllable nanoself-assembly process due to insufficient measuring methods. Herein, we propose a new and effective fluorescence technology for realizing quantitative detection of a controllable conversion process of one-dimensional (1D)/two-dimensional (2D) nanoassemblies by introducing AIEgens as the fluorescence signal part.

View Article and Find Full Text PDF

is a major nosocomial pathogen that persists in healthcare settings despite rigorous disinfection protocols due to intrinsic mechanisms conferring resistance. We sought to systematically assess cationic biocide efficacy against this pathogen using a panel of multidrug-resistant clinical isolates. Our studies revealed widespread resistance to commercial cationic disinfectants that are the current standard of care, raising concerns about their efficacy.

View Article and Find Full Text PDF

biocatalytic ATP regulated, transient supramolecular polymerization.

J Mater Chem B

October 2024

Supramolecular Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India.

Temporal control over self-assembly processes is a highly desirable attribute that is efficiently exhibited by biological systems, such as actin filaments. In nature, various proteins undergo enzymatically catalysed chemical reactions that kinetically govern their structural and functional properties. Consequently, any stimuli that can alter their reaction kinetics can lead to a change in their growth or decay profiles.

View Article and Find Full Text PDF

This study details the preparation and investigation of molecular nanogels formed by the self-assembly of bolaamphiphilic dipeptide derivatives containing a reduction-sensitive disulfide unit. The described bolaamphiphiles, featuring amino acid terminal groups, generate cationic vesicles at pH 4, which evolve into gel-like nanoparticles at pH 7. The critical aggregation concentration has been determined, and the nanogels' size and morphology have been characterized through Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM).

View Article and Find Full Text PDF

In the field of molecular self-assembly, the core of an assembly is always made up of hydrophobic moiety like a long alkyl chain, whereas the outer part has always been a hydrophilic moiety such as poly(ethylene glycol) (PEG), or charged species. Hence, reversing the trend to manifest self-assembled structures with a PEG core and a surface consisting of alkyl chains in aqueous system is incredibly challenging. Herein, we architected a unique class of cationic bolaamphiphiles containing low molecular weight PEG and alkyl chains of different lengths.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!