Water monitoring is important in domains including documenting climate change, weather prediction and fishing. This paper presents a simple and energy efficient localization strategy for near surface buoy based sensors. Sensors can be dropped randomly in the ocean and thus self-calibrate in terms of geographic location such that geo-tagged observations of water quality can be made without the need for costly and energy consuming GPS-hardware. The strategy is based on nodes with an accurate clock and light sensors that can regularly sample the level of light intensity. The measurements are fitted into a celestial model of the earth motion around the sun. By identifying the trajectory of the sun across the skies one can accurately determine sunrise and sunset times, and thus extract the longitude and latitude of the sensor. Unlike previous localization techniques for underwater sensors, the current approach does not rely on stationary or mobile reference points.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3304148 | PMC |
http://dx.doi.org/10.3390/s120201930 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!