This paper presents a proposal for an Artificial Neural Network (ANN)-based architecture for completion and prediction of data retrieved by underwater sensors. Due to the specific conditions under which these sensors operate, it is not uncommon for them to fail, and maintenance operations are difficult and costly. Therefore, completion and prediction of the missing data can greatly improve the quality of the underwater datasets. A performance study using real data is presented to validate the approach, concluding that the proposed architecture is able to provide very low errors. The numbers show as well that the solution is especially suitable for cases where large portions of data are missing, while in situations where the missing values are isolated the improvement over other simple interpolation methods is limited.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3304122PMC
http://dx.doi.org/10.3390/s120201468DOI Listing

Publication Analysis

Top Keywords

completion prediction
12
performance study
8
artificial neural
8
prediction data
8
data retrieved
8
retrieved underwater
8
underwater sensors
8
data
5
study application
4
application artificial
4

Similar Publications

Black carp (Mylopharyngodon piceus) is one of the "four famous domestic fishes" in China and an important economic fish in freshwater aquaculture. A high-quality genome is essential for advancing future biological research and breeding programs for this species. In this study, we aimed to generate a high-quality chromosome-level genome assembly of black carp using Nanopore and Hi-C technologies.

View Article and Find Full Text PDF

Introduction: To analyze the impact of Kirsten-Rat-Sarcoma Virus (KRAS) mutations on tumor-growth as estimated by tumor-doubling-time (TDT) among solid-dominant clinical-stage I lung adenocarcinoma. Moreover, to evaluate the prognostic role of KRAS mutations, TDT and their combination in completely-resected pathologic-stage I adenocarcinomas.

Methods: In this single-center retrospective analysis, completely resected clinical-stage I adenocarcinomas presenting as solid-dominant nodules (consolidation-to-tumor ratio > 0.

View Article and Find Full Text PDF

Protocol for a systematic review and individual participant data meta-analysis for risk factors for lung cancer in individuals with lung nodules identified by low-dose CT screening.

BMJ Open

January 2025

Centre for Cancer Screening, Prevention and Early Diagnosis, Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.

Background: Worldwide, lung cancer (LC) is the second most frequent cancer and the leading cause of cancer related mortality. Low-dose CT (LDCT) screening reduced LC mortality by 20-24% in randomised trials of high-risk populations. A significant proportion of those screened have nodules detected that are found to be benign.

View Article and Find Full Text PDF

Objectives: It is essential to manage type 2 diabetes mellitus (T2DM) through self-care behaviours and to ascertain the predictors of correct health training for the control of diabetes. The aim of this study was to determine the predictive role of the constructs of the health belief model in encouraging T2DM to adopt self-care behaviours in Bandar Abbas city.

Design: This cross-sectional study was conducted in 2022 in Bandar Abbas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!