Cartilage has a poor regenerative capacity. Tissue-engineering approaches using porous scaffolds seeded with chondrocytes may improve cartilage repair. The aim of this study was to examine the effect of pore size and pore interconnectivity on cartilage repair in osteochondral defects treated with different scaffolds seeded with allogenic chondrocytes. Scaffolds consisting of 55 wt% poly(ethylene oxide terephthalate) and 45 wt% poly(butylene terephthalate) (PEOT/PBT) with different pore sizes and interconnectivities were made, using a compression moulding (CM) and a three-dimensional fibre (3DF) deposition technique. In these scaffolds, allogenic chondrocytes were seeded, cultured for 3 weeks and implanted in osteochondral defects of skeletally mature rabbits. At 3 weeks no difference in cartilage repair between an empty osteochondral defect, CM or 3DF scaffolds was found. Three months post-implantation, cartilage repair was significantly improved after implantation of a 3DF scaffold compared to a CM scaffold. Although not significant, Mankin scores for osteoarthritis (OA) indicated less OA in the 3DF scaffold group compared to empty defects and CM-treated defects. It is concluded that scaffold pore size and pore interconnectivity influences osteochondral repair and a decreased pore interconnectivity seems to impair osteochondral repair.

Download full-text PDF

Source
http://dx.doi.org/10.1002/term.1477DOI Listing

Publication Analysis

Top Keywords

cartilage repair
16
osteochondral repair
12
pore interconnectivity
12
scaffolds seeded
8
pore size
8
size pore
8
osteochondral defects
8
allogenic chondrocytes
8
3df scaffold
8
repair
7

Similar Publications

Effects of Silk Fibroin Hydrogel Degradation on the Proliferation and Chondrogenesis of Encapsulated Stem Cells.

Biomacromolecules

January 2025

State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China.

Silk fibroin (SF) hydrogels are widely used in three-dimensional (3D) cell culture and tissue repair. Despite their importance, few studies have focused on regulating their degradation and further revealing the effects of the degradation process on encapsulated cell behaviors. Herein, SF hydrogels with equivalent initial properties and different degradation rates were prepared by adjusting the ratios between the hydrogel-encapsulated normal SF microspheres (MS) and enzyme-loaded SF microspheres (MS).

View Article and Find Full Text PDF

Peptide Nanofibers and Skin Regeneration.

Adv Exp Med Biol

January 2025

Requalite GmbH, Gräfelfing, Germany.

Peptide nanofibers have been attractive targets for regenerative medicine applications due to their tailorability to be easily functionalized for specific bioactivity, biocompatibility, ease of synthesis, adjustability of their physicochemical characteristics, and lack of biological contamination. Research groups have investigated their use for the regeneration of various tissues, such as bone, cartilage, brain, peripheral nerves, cardiac tissue, vascular tissues, endocrine cells, muscles, etc., for the treatment of degenerative diseases or tissue loss due to accidents or aging.

View Article and Find Full Text PDF

Objectives: The incidence rate of intervertebral disc degeneration (IVDD) is increasing year by year, which brings great harm to our health. The change of biomechanical factors is an important reason for IVDD. Therefore, more and more studies use finite element (FE) models to analyze the biomechanics of spine.

View Article and Find Full Text PDF

Review of femoroacetabular impingement syndrome.

J Hip Preserv Surg

December 2024

Hip and Knee Adult Reconstruction Department, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra, Calzada México-Xochimilco No. 289 Colonia Arenal de Guadalupe Delegación, Tlalpan C.P., Ciudad de México 14389, México.

Femoroacetabular impingement syndrome (FAIS) is a common condition of the hip that can cause significant damage to the joint, leading to degeneration and osteoarthritis. FAIS constitutes an abnormal and dynamic contact between the femoral head-neck junction and the acetabular rim, resulting from altered bone morphology at one or both sites. Repetitive trauma at the site of impingement generates progressive damage to the acetabular labrum, chondrolabral junction, and articular cartilage.

View Article and Find Full Text PDF

Intraoperative assessment of labral quality determines arthroscopic repair versus reconstruction for hip labral tear treatment. T2 mapping technology discriminates between healthy and damaged cartilage. This study investigated if T2 mapping magnetic resonance imaging (MRI) can preoperatively predict labral repair versus reconstruction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!