Luminescent quantum dots for molecular toxicology.

Adv Exp Med Biol

Department of Bioengineering, University of Washington, Seattle, Washington, USA.

Published: May 2012

Recent developments in nanotechnology have made available a host of new approaches for the improved quantitative detection of biomarkers due to the enhanced sensitivity of nanoparticle-based assays. The majority of molecular toxicology studies revolve around sensitive measurement of cell-death (apoptosis) and cell-health biomarkers present in living cells or formalin-fixed and paraffin embedded (FFPE) tissue samples. In this regard, semi-conductor quantum dots (QDs) which exhibit high brightness, photo-stability and degree of multiplexing, are predicted to have a significant impact on research in molecular toxicology. Due to these superior photophysical properties of QDs as compared to traditional fluorophores and the unsurpassed versatility of QDs as enabling components for new assays, these nanoparticles promise to facilitate new discoveries in molecular toxicology. Indeed, multiplexed QD-based assays have been incorporated into cell imaging, flow cytometry and other homogenized sample-based assays for detecting multiple biomarkers including those associated with cell injury and apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4614-3055-1_8DOI Listing

Publication Analysis

Top Keywords

molecular toxicology
16
quantum dots
8
luminescent quantum
4
molecular
4
dots molecular
4
toxicology
4
toxicology developments
4
developments nanotechnology
4
nanotechnology host
4
host approaches
4

Similar Publications

Context: The medications for metabolic syndromes are very minimal and the available are not effective and show adverse effects. There is a huge need for the development of effective and safe drugs to battle metabolic syndromes. In this context, our study aimed to decipher the key molecules from Artocarpus communis seed hexane fraction and their possible mechanism of action against metabolic syndrome.

View Article and Find Full Text PDF

The Issue of "Smart Drugs" on the Example of Modafinil: Toxicological Analysis of Evidences and Biological Samples.

J Xenobiot

January 2025

Department of Social Sciences and Infectious Diseases, Faculty of Medicine, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Street, 50370 Wroclaw, Poland.

Cognitive enhancement through stimulants such as modafinil is becoming increasingly popular, with many individuals using prescription stimulants for non-medical purposes to improve alertness, attention, and mood. The misuse of such substances has raised concerns, particularly in forensic toxicology. The UHPLC-QqQ-MS/MS method was developed to quantify modafinil in evidentiary samples and biological materials.

View Article and Find Full Text PDF

Chlorpyrifos (CPF) is a broad-spectrum organophosphate insecticide. Long-term exposure to low levels of CPF is associated with neurodevelopmental and neurodegenerative disorders. The mechanisms leading to these effects are still not fully understood.

View Article and Find Full Text PDF

Correction for ' transplantation of intrahepatic cholangiocyte organoids with decellularized liver-derived hydrogels supports hepatic cellular proliferation and differentiation in chronic liver injury' by Impreet Kaur , , 2025, , 918-928, https://doi.org/10.1039/D4TB01503G.

View Article and Find Full Text PDF

: in the twenty-first century, the emergence of COVID-19 as a highly transmissible pandemic disease caused by SARS-CoV-2 posed a significant threat to humanity. : the disease spreads through small respiratory droplets, necessitating the use of various compounds for treatment, with alkaloids being recognized as particularly crucial owing to their diverse pharmaceutical properties. : in this study, a dataset comprising 100 natural alkaloids obtained from the literature was transformed into 2D chemical structures using Chem Draw 19.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!