Pooling-based strategies that combine samples from multiple participants for laboratory assays have been proposed for epidemiologic investigations of biomarkers to address issues including cost, efficiency, detection, and when minimal sample volume is available. A modification of the standard logistic regression model has been previously described to allow use with pooled data; however, this model makes assumptions regarding exposure distribution and logit-linearity of risk (i.e., constant odds ratio) that can be violated in practice. We were motivated by a nested case-control study of miscarriage and inflammatory factors with highly skewed distributions to develop a more flexible model for analysis of pooled data. Using characteristics of the gamma distribution and the relation between models of binary outcome conditional on exposure and of exposure conditional on outcome, we use a modified logistic regression to accommodate nonlinearity because of unequal shape parameters in gamma distributed exposure for cases and controls. Using simulations, we compare our approach with existing methods for logistic regression for pooled data considering: (1) constant and dose-dependent effects; (2) gamma and log-normal distributed exposure; (3) effect size; and (4) the proportions of biospecimens pooled. We show that our approach allows estimation of odds ratios that vary with exposure level, yet has minimal loss of efficiency compared with existing approaches when exposure effects are dose-invariant. Our model performed similarly to a maximum likelihood estimation approach in terms of bias and efficiency, and provides an easily implemented approach for estimation with pooled biomarker data when effects may not be constant across exposure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3878867 | PMC |
http://dx.doi.org/10.1002/sim.5351 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!