The aim of this study was to improve the dissolution rate of efavirenz (EFV) by formulating a physically stable dispersion in polymers. Hot-melt extrusion (HME) was used to prepare solid solutions of EFV with Eudragit EPO (a low-glass transition polymer) or Plasdone S-630 (a high-glass transition polymer). The drug-polymer blends were characterized for their thermal and rheological properties as a function of drug concentration to understand their miscibility and processability by HME. The solid-state stability of extrudates was characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and dissolution studies. Thermal and rheological studies revealed that the drug is miscible with both polymers, and a decrease in melt viscosity was observed as the drug concentration increased. XRD and DSC studies confirmed the existence of amorphous state of EFV in the extrudates during storage. The dissolution rate of EFV from the extrudates was substantially higher than the crystalline drug. FTIR studies revealed an interaction between the EFV and Plasdone S-630, which reduced the molecular mobility and prevented crystallization upon storage. EFV and Eudragit EPO systems lack specific interactions, but are less susceptible to crystallization due to the antiplasticization effect of the polymer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jps.23125 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!