Reprogramming the kidney: a novel approach for regeneration.

Kidney Int

Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia.

Published: July 2012

Nuclear reprogramming has reshaped stem cell science and created new avenues for cell-based therapies. The ability to bestow any given phenotype upon adult cells regardless of their origin is an exciting possibility. How can this powerful tool be harnessed for the treatment of kidney disease? Many approaches, including induced pluripotent stem cell (iPSC) production, direct lineage conversion, and reprogramming to a kidney progenitor, are now possible. Indeed, the generation of iPSC lines from adult kidney-derived cells has been successfully achieved. This, however, is just the beginning of the challenge. This review will discuss the fundamental concepts of transcription factor-based reprogramming in its various forms, highlighting recent advances in the field and how these are applicable to the kidney. The relative merits of each approach will be discussed in the context of what is a realistic and feasible strategy for kidney regeneration via reprogramming.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ki.2012.68DOI Listing

Publication Analysis

Top Keywords

reprogramming kidney
8
stem cell
8
reprogramming
5
kidney novel
4
novel approach
4
approach regeneration
4
regeneration nuclear
4
nuclear reprogramming
4
reprogramming reshaped
4
reshaped stem
4

Similar Publications

Cloaca is an ultra-rare severe anorectal malformation in females where the gastrointestinal, genital, and urologic systems converge. Posterior Cloaca (Type B) is an extremely rare specific variant, where the urogenital sinus opens just anterior to the anus. NCHi027-A is an iPSC line derived from skin fibroblasts of a 4 year and 8-month-old female with Posterior Cloaca (Type B) using Sendai Virus reprogramming.

View Article and Find Full Text PDF

Malignant rhabdoid tumor (MRT) is one of the most aggressive childhood cancers for which no effective treatment options are available. Reprogramming of cellular metabolism is an important hallmark of cancer, with various metabolism-based drugs being approved as a cancer treatment. In this study, we use patient-derived tumor organoids (tumoroids) to map the metabolic landscape of several pediatric cancers.

View Article and Find Full Text PDF

Background: Precision oncology's implementation in clinical practice faces significant constraints due to the inadequacies in tools for detailed patient stratification and personalized treatment methodologies. Dysregulated tryptophan metabolism has emerged as a crucial factor in tumor progression, encompassing immune suppression, proliferation, metastasis, and metabolic reprogramming. However, its precise role in clear cell renal cell carcinoma (ccRCC) remains unclear, and predictive models or signatures based on tryptophan metabolism are conspicuously lacking.

View Article and Find Full Text PDF

Review on the role of autophagy in the toxicity of nanoparticles and the signaling pathways involved.

Chem Biol Interact

December 2024

Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China. Electronic address:

As the development of nanotechnology, the application of nanoproducts and the advancement of nanomedicine, the contact of nanoparticles (NPs) with human body is becoming increasingly prevalent. This escalation elevates the risk of NPs exposure for workers, consumers, researchers, and both aquatic and terrestrial organisms throughout the production, usage, and disposal stages. Consequently, evaluating nanotoxicity remains critically important, though standardized assessment criteria are still lacking.

View Article and Find Full Text PDF

Mitochondria are essential for cellular energy production and are implicated in numerous diseases, including diabetic kidney disease (DKD). Current evidence indicates that mitochondrial dysfunction results in alterations in several metabolic pathways within kidney cells, thereby contributing to the progression of DKD. Furthermore, mitochondrial dysfunction can engender an inflammatory milieu, leading to the activation and recruitment of immune cells to the kidney tissue, potentially perturbing intrarenal metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!