It is well established that hypoxia causes excess accumulation of glutamate in developing neural tissues. This study aimed to elucidate the mechanism by which glutamate can cause retinal ganglion cell (RGC) death through the N-methyl-D-aspartate (NMDA) receptors (NR) in the developing retina. One-day-old Wistar rats were exposed to hypoxia for 2 hours and then killed at different time points. Normal age-matched rats were used as controls. NR1, NR2A-D, and NR3A messenger RNA and protein expression showed significant increases over control values, notably at early time points (3 hours to 7 days) after the hypoxic exposure, and immunoexpression of NR1, NR2A-D and NR3A on retinal ganglion cells (RGCs) was enhanced in hypoxic rats and this was confirmed in cultured hypoxic RGCs. Ca(2+) influx in cultured RGCs was increased after hypoxic exposure, and the intracellular Ca(2+) concentration was suppressed by MK-801. Mitochondrial permeability transition pore opening, mitochondrial/cytosolic cytochrome c, and cytosolic caspase-3 expression levels were significantly increased in the hypoxic RGCs. These increases were reversed by MK-801, suggesting that the NMDA receptor subunits in the retina respond rapidly to the hypoxia-induced glutamate overload that leads to the cascade of events that result in RGC death.

Download full-text PDF

Source
http://dx.doi.org/10.1097/NEN.0b013e31824deb21DOI Listing

Publication Analysis

Top Keywords

retinal ganglion
12
ganglion cell
8
rgc death
8
time points
8
nr1 nr2a-d
8
nr2a-d nr3a
8
hypoxic exposure
8
hypoxic rgcs
8
increased hypoxic
8
hypoxic
5

Similar Publications

Purpose: The relationship between retinal morphology, as assessed by optical coherence tomography (OCT), and retinal function in microperimetry (MP) has not been well studied, despite its increasing importance as an essential functional endpoint for clinical trials and emerging therapies in retinal diseases. Normative databases of healthy ageing eyes are largely missing from literature.

Methods: Healthy subjects above 50 years were examined using two MP devices, MP-3 (NIDEK) and MAIA (iCare).

View Article and Find Full Text PDF

We used machine learning to investigate the residual visual field (VF) deficits and macula retinal ganglion cell (RGC) thickness loss patterns in recovered optic neuritis (ON). We applied archetypal analysis (AA) to 377 same-day pairings of 10-2 VF and optical coherence tomography (OCT) macula images from 93 ON eyes and 70 normal fellow eyes ≥ 90 days after acute ON. We correlated archetype (AT) weights (total weight = 100%) of VFs and total retinal thickness (TRT), inner retinal thickness (IRT), and macular ganglion cell-inner plexiform layer (GCIPL) thickness.

View Article and Find Full Text PDF

Purpose: To compare the retinal nerve fiber layer (RNFL), ganglion cell-inner plexiform layer thickness, central subfield thickness (CSFT), and parafoveal and perifoveal thickness in children of different age groups with young adult controls by using spectral-domain optical coherence tomography.

Methods: This cross-sectional study included children aged 6-17 years and adult controls (18-22 years) - group 1: 6-9 years (57 eyes), group 2: 10-13 years (116 eyes), group 3: 14-17 years (66 eyes), and group 4 (controls): 18-22 years (61 eyes). A mixed-effects model was used to compare the OCT parameters among the groups, along with multivariable analysis.

View Article and Find Full Text PDF

Glaucoma encompasses a spectrum of disorders characterized by the chronic degeneration of retinal ganglion cell (RGC) axons and the progressive loss of RGCs, resulting in visual impairment. In this study, we investigated the effect of autophagy deficiency on two glaucoma hypertensive models, the DBA/2J spontaneous glaucoma model, and the TGFβ2 (transforming growth factor β2) chronic ocular hypertensive model. For this, we used the and DBA/2J- mice, this latter generated in our laboratory via CRISPR/Cas9 technology, which display impaired autophagy.

View Article and Find Full Text PDF

The fovea, a pit in the retina, is crucial for high-acuity vision in humans and is found in the eyes of other vertebrates, including certain primates, birds, lizards, and fish. Despite its importance for vision, our understanding of the mechanisms involved in fovea development remains limited. Widely used ocular research models lack a foveated retina, and studies on fovea development are mostly limited to histological and molecular studies in primates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!