Pyridinium chlorochromate, [C(5)H(5)NH](+)[ClCrO(3)](-) (hereafter referred to as PyClCrO(3)), was studied by X-ray diffraction, differential scanning calorimetry (DSC) and dielectric methods. Studies reveal three reversible phase transitions at 346, 316 and 170 K with the following phase sequence: R ̅3m (I) → R3m (II) → Cm (III) → Cc (IV), c' = 2c. PyClCrO(3) is the first pyridinium salt in which all four phases have been successfully characterized by a single-crystal X-ray diffraction method. Structural results together with dielectric and calorimetric studies allow the classification of the two intermediate phases (II) and (III) as ferroelectric with the Curie point at 346 K, and the lowest phase (IV) as most probably ferroelectric. The ferroelectric hysteresis loop was observed only in phase (III). The high ionic conductivity hindered its observation in phase (II).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/S0108768112005782 | DOI Listing |
Nanoscale Adv
December 2024
Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University Taif 21944 Saudi Arabia.
Mesoporous materials have garnered significant interest because of their porous structure, large surface area and ease of surface functionalization to incorporate the functional groups of choice. Herein, chiral mesoporous silica nanoparticles (CMSNPs) were prepared using quaternary amino silane as the template, tetramethyl orthosilicate as the silica source and proline and cellulose as chiral selector. The developed CMSNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction analysis, BET surface area analysis and BJH pore size/volume analysis.
View Article and Find Full Text PDFSci Rep
January 2025
School of petroleum engineering, Yangtze University, Wuhan, 430100, China.
Given the suboptimal physical properties and distinctive geological conditions of deep coalbed methane reservoirs, any reservoir damage that occurs becomes irreversible. Consequently, the protection of these deep coalbed methane reservoirs is of paramount importance. This study employs experimental techniques such as scanning electron microscopy, X-ray diffraction, and micro-CT imaging to conduct a comprehensive analysis of the pore structure, mineral composition, fluid characteristics, and wettability of coal seams 3# and 15# in the northern Qinshui Basin of China.
View Article and Find Full Text PDFSci Rep
January 2025
Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, 62511, Egypt.
This study investigates how biogenic mesoporous silica nanoparticles (MS-NPs) extracted from rice straw residues, a sustainable and economical bio-source, affect White Ordinary Portland Cement (WOPC) paste performance. A comprehensive investigation using varied fractions of 0.25, 0.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China. Electronic address:
The advancement of active packaging for food conservation has attracted considerable interest over time. In the present study, we aims to create and examine active films composed of chitosan (CS), poly(vinyl alcohol) (PVA), and syzygium guineense plant extract (SYZ) for potential use in food preservation. We examined the impact of ethanol extracts from the SYZ plant on the films' tensile strength, physical, antibacterial, and anti-oxidant properties.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilisation of Bio-based Textile Materials, Wuhan Textile University, Wuhan 430200, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430200, China. Electronic address:
The conventional method of dyeing cellulose diacetate (CDA) fabric with disperse dyes consumes significant amounts of fresh water and dispersants, contributing to environmental pollution and health hazards. This study explored the use of liquid paraffin as an alternative to aqueous mediums for dyeing CDA fabric with Disperse Blue 56 dyes, eliminating the need for dispersants. An L orthogonal array was used to optimize dyeing conditions based on the color strength values.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!