Bovine mammary stem cells: cell biology meets production agriculture.

Animal

Bovine Functional Genomics Laboratory, USDA-ARS, Beltsville, MD 20705, USA.

Published: March 2012

Mammary stem cells (MaSC) provide for net growth, renewal and turnover of mammary epithelial cells, and are therefore potential targets for strategies to increase production efficiency. Appropriate regulation of MaSC can potentially benefit milk yield, persistency, dry period management and tissue repair. Accordingly, we and others have attempted to characterize and alter the function of bovine MaSC. In this review, we provide an overview of current knowledge of MaSC gained from studies using mouse and human model systems and present research on bovine MaSC within that context. Recent data indicate that MaSC retain labeled DNA for extended periods because of their selective segregation of template DNA strands during mitosis. Relying on this long-term retention of bromodeoxyuridine-labeled DNA, we identified putative bovine MaSC. These label-retaining epithelial cells (LREC) are in low abundance within mammary epithelium (<1%). They are predominantly estrogen receptor (ER)-negative and localized in a basal or suprabasal layer of the epithelium throughout the gland. Thus, the response of MaSC to estrogen, the major mitogen in mammary gland, is likely mediated by paracrine factors released by cells that are ER-positive. This is consistent with considerable evidence for cross-talk within and between epithelial cells and surrounding stromal cells. Excision of classes of cells by laser microdissection and subsequent microarray analysis will hopefully provide markers for MaSC and insights into their regulation. Preliminary analyses of gene expression in laser-microdissected LREC and non-LREC are consistent with the concept that LREC represent populations of stem cells and progenitor cells that differ with regard to their properties and location within the epithelial layer. We have attempted to modulate the MaSC number by infusing a solution of xanthosine through the teat canal and into the ductal network of the mammary glands of prepubertal heifers. This treatment increased the number of putative stem cells, as evidenced by an increase in the percentage of LREC and increased telomerase activity within the tissue. The exciting possibility that stem cell expansion can influence milk production is currently under investigation.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1751731111002369DOI Listing

Publication Analysis

Top Keywords

bovine masc
12
mammary stem
8
stem cells
8
epithelial cells
8
masc
7
bovine
4
bovine mammary
4
cells
4
cells cell
4
cell biology
4

Similar Publications

Mammary stem cells (MaSC) are essential for growth and maintenance of mammary epithelium. Previous studies have utilized morphological characteristics or retention of bromodeoxyuridine (BrdU) label to identify MaSC and progenitor cells, these approaches may not be feasible or may not identify all resident stem cells. Alternatively, these special cells may be identified by assessing protein and mRNA expression of appropriate markers.

View Article and Find Full Text PDF

Milk production is highly dependent on the extensive development of the mammary epithelium, which occurs during puberty. It is therefore essential to distinguish the epithelial cells committed to development from the related epithelial hierarchy. Using cell phenotyping and sorting, we highlighted four cell sub-populations within the bovine mammary gland at puberty.

View Article and Find Full Text PDF

The plasticity of the mammary gland relies on adult mammary stem cells (MaSCs) and their progenitors, which give rise to various populations of mammary epithelial cells (MECs). To face global challenges, an in-depth characterization of milk-producing animal mammary gland plasticity is required, to select more sustainable and robust dairy cows. The identification and characterization of MaSC and their progenitors will also provide innovative tools in veterinary/human medicine regarding mammary tissue damage (carcinogenesis, bacterial infections).

View Article and Find Full Text PDF

Background: Lethal chondrodysplasia (bulldog syndrome) is a well-known congenital syndrome in cattle and occurs sporadically in many breeds. In 2015, it was noticed that about 12% of the offspring of the phenotypically normal Danish Holstein sire VH Cadiz Captivo showed chondrodysplasia resembling previously reported bulldog calves. Pedigree analysis of affected calves did not display obvious inbreeding to a common ancestor, suggesting the causative allele was not a rare recessive.

View Article and Find Full Text PDF

Earlier studies reported allelic deletion of the essential autophagy regulator BECN1 in breast cancers implicating BECN1 loss, and likely defective autophagy, in tumorigenesis. Recent studies have questioned the tumor suppressive role of autophagy, as autophagy-related gene (Atg) defects generally suppress tumorigenesis in well-characterized mouse tumor models. We now report that, while it delays or does not alter mammary tumorigenesis driven by Palb2 loss or ERBB2 and PyMT overexpression, monoallelic Becn1 loss promotes mammary tumor development in 2 specific contexts, namely following parity and in association with wingless-type MMTV integration site family, member 1 (WNT1) activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!