Background: Relationships between indoor air quality (IAQ) found in schools and the allergic and respiratory health of schoolchildren have been insufficiently explored. A survey was conducted in a large sample of classrooms of primary schools in France to provide objective assessments of IAQ to which young schoolchildren are exposed in classrooms, and to relate exposure to major air pollutants found in classrooms to asthma and allergies of schoolchildren.
Methods: Concentrations of fine particles with aerodynamic diameter ≤2.5 μm (PM(2.5)), nitrogen dioxide (NO(2)) and three aldehydes were objectively assessed in 401 randomly chosen classrooms in 108 primary schools attended by 6590 children (mean age 10.4 years, SD ±0.7) in the French 6 Cities Study. The survey incorporated a medical visit including skin prick testing (SPT) for common allergens, a test for screening exercise-induced asthma (EIA) and a standardised health questionnaire completed by parents.
Results: Children were differently exposed to poor air quality in classrooms, with almost 30% being highly exposed according to available standards. After adjusting for confounders, past year rhinoconjunctivitis was significantly associated with high levels of formaldehyde in classrooms (OR 1.19; 95% CI 1.04 to 1.36). Additionally, an increased prevalence of past year asthma was found in the classrooms with high levels of PM(2.5) (OR 1.21; 95% CI 1.05 to 1.39), acrolein (OR 1.22; 95% CI 1.09 to 1.38) and NO(2) (OR 1.16; 95% CI 0.95 to 1.41) compared with others. The relationship was observed mostly for allergic asthma as defined using SPT. A significant positive correlation was found between EIA and the levels of PM(2.5) and acrolein in the same week.
Conclusions: In this random sample, air quality in classrooms was poor, varied significantly among schools and cities, and was related to an increased prevalence of clinical manifestations of asthma and rhinitis in schoolchildren. Children with a background of allergies seemed at increased risk.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3402758 | PMC |
http://dx.doi.org/10.1136/thoraxjnl-2011-200391 | DOI Listing |
Environ Sci Technol
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Air pollution is a leading contributor to the global disease burden. However, the complex nature of the chemicals to which humans are exposed through inhalation has obscured the identification of the key compounds responsible for diseases. Here, we develop a network topology-based framework to identify key toxic compounds in the airborne chemical exposome.
View Article and Find Full Text PDFInt J Biometeorol
January 2025
Department of Preventive Health, Shanxi Cardiovascular Hospital, No. 18 Yifen Street, Wanbailin District, Taiyuan, 030024, Shanxi Province, China.
Air pollution remains a significant threat to human health and economic development. Most previous studies have examined the health effects of individual pollutants, which often overlook the combined impacts of multiple pollutants. The traditional composite indicator air quality index (AQI) only focuses on the major pollutants, whereas the health risk-based air quality index (HAQI) could offer a more comprehensive evaluation of the health effects of various pollutants on populations.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
International Joint Research Center For Green Energy and Chemical Industry, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
Escalating SOx and NOx emissions from industrial plants necessitates customized scrubbing solutions to improve removal efficiency and tackle cost limitations in existing wet FGD units. This work investigates the real-time intensified removal pathways via an innovative two-stage countercurrent spray tower configuration strategically integrating NaOH (M) and NaOH/NaClO (M/M) to remove SOx and NOx emissions simultaneously from the industrial stack through a comprehensive parametric study of absorbents concentration, reaction temperature, gas flow rate, liquid to gas ratio (F/F), and absorbent showering head. Flue gas stream comprising SO bearing 4500 ppm, SO bearing 300 ppm, 70 ppm NO, and 50 ppm NO brought into contact with two scrubbing solutions as M, and a complex absorbent of M/M at varying respective ratios.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Rollins School of Public Health, Emory U, Atlanta, Ga 30322, United States.
Repeated measurements of household air pollution may provide better estimates of average exposure but can add to costs and participant burden. In a randomized trial of gas versus biomass cookstoves in four countries, we took supplemental personal 24-h measurements on a 10% subsample for mothers and infants, interspersed between protocol samples. Mothers had up to five postrandomization protocol measurements over 16 months, while infants had three measurements over one year.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California 94609, United States.
Exposure to household air pollution has been linked to adverse health outcomes among women aged 40-79. Little is known about how shifting from biomass cooking to a cleaner fuel like liquefied petroleum gas (LPG) could impact exposures for this population. We report 24-h exposures to particulate matter (PM), black carbon (BC), and carbon monoxide (CO) among women aged 40 to <80 years participating in the Household Air Pollution Intervention Network trial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!