Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Vascular endothelial growth factor A (VEGF-A) is best known for its essential roles in blood vessel growth. However, evidence has emerged that VEGF-A also promotes a wide range of neuronal functions, both in vitro and in vivo, including neurogenesis, neuronal migration, neuronal survival and axon guidance. Recent studies have employed mouse models to distinguish the direct effects of VEGF on neurons from its indirect, vessel-mediated effects. Ultimately, refining our knowledge of VEGF signalling pathways in neurons should help us to understand how the current use of therapeutics targeting the VEGF pathway in cancer and eye disease might be expanded to promote neuronal health and nerve repair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.072348 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!