In efforts to identify novel small molecules with anti-inflammatory properties, we discovered a unique series of tetracyclic indenoquinoxaline derivatives that inhibited lipopolysaccharide (LPS)-induced nuclear factor-κB/activating protein 1 activation. Compound IQ-1 (11H-indeno[1,2-b]quinoxalin-11-one oxime) was found to be a potent, noncytotoxic inhibitor of pro-inflammatory cytokine [interleukin (IL)-1α, IL-1β, IL-6, IL-10, tumor necrosis factor (TNF)-α, interferon-γ, and granulocyte-macrophage colony-stimulating factor] and nitric oxide production by human and murine monocyte/macrophages. Three additional potent inhibitors of cytokine production were identified through further screening of IQ-1 analogs. The sodium salt of IQ-1 inhibited LPS-induced TNF-α and IL-6 production in MonoMac-6 cells with IC(50) values of 0.25 and 0.61 μM, respectively. Screening of 131 protein kinases revealed that derivative IQ-3 [11H-indeno[1,2-b]quinoxalin-11-one-O-(2-furoyl)oxime]was a specific inhibitor of the c-Jun N-terminal kinase (JNK) family, with preference for JNK3. This compound, as well as IQ-1 and three additional oxime indenoquinoxalines, were found to be high-affinity JNK inhibitors with nanomolar binding affinity and ability to inhibit c-Jun phosphorylation. Furthermore, docking studies showed that hydrogen bonding interactions of the active indenoquinoxalines with Asn152, Gln155, and Met149 of JNK3 played an important role in enzyme binding activity. Finally, we showed that the sodium salt of IQ-1 had favorable pharmacokinetics and inhibited the ovalbumin-induced CD4(+) T-cell immune response in a murine delayed-type hypersensitivity model in vivo. We conclude that compounds with an indenoquinoxaline nucleus can serve as specific small-molecule modulators for mechanistic studies of JNKs as well as a potential leads for the development of anti-inflammatory drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3362897 | PMC |
http://dx.doi.org/10.1124/mol.111.077446 | DOI Listing |
Nat Cardiovasc Res
January 2025
Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
Beyond dyslipidemia, inflammation contributes to the development of atherosclerosis. However, intrinsic factors that counteract vascular inflammation and atherosclerosis remain scarce. Here we identify insulin-like growth factor binding protein 6 (IGFBP6) as a homeostasis-associated molecule that restrains endothelial inflammation and atherosclerosis.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemical Sciences, University of Naples "Federico II", Via Cintia, 21, 80126 Napoli, Italy; CEINGE Advanced Biotechnologies s.c.a r.l. "Franco Salvatore", Via Gaetano Salvatore 486, 80131 Napoli, Italy. Electronic address:
SARS-CoV-2 encodes a 3C-like protease (3CL) that is essential for viral replication. This cysteine protease cleaves viral polyproteins to release functional nonstructural proteins, making it a prime target for antiviral drug development. We investigated the inhibitory effects of halicin, a known c-Jun N-terminal kinase inhibitor, on 3CL.
View Article and Find Full Text PDFBiochem Pharmacol
January 2025
Department of Biomedical Sciences, College of Medicine, University of Houton, Houston, TX, 77204, USA. Electronic address:
Cannabidiol (CBD), a phytocannabinoid, has emerged as a promising candidate for addressing a wide array of symptoms. It has the ability to bind multiple proteins and receptors, including 5-HT1AR, transient receptor potential vanilloid 1 (TRPV1), and cannabinoid receptors. However, CBD's pharmacodynamic interaction with 5-HT1AR and its medicinal outcomes are still debated.
View Article and Find Full Text PDFChem Biodivers
January 2025
Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh.
Hinokitiol (HK), a monoterpenoid that naturally occurs in plants belonging to the Cupressaceae family, possesses important biological activities, including an anticancer effect. This review summarizes its anticancer potential and draws possible molecular interventions. In addition, it evaluates the biopharmaceutical, toxicological properties, and clinical application of HK to establish its viability for future advancement as a dependable anticancer medication.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea.
This research evaluated the protective role of a combined extract of and (DBZO) against respiratory dysfunction caused by particulate matter (PM) exposure in BALB/c mice. The bioactive compounds identified in the DBZO are catechin, astragalin, 6-gingerol, 8-gingerol, and 6-shogaol. DBZO ameliorated cell viability and reactive oxygen species (ROS) production in PM-stimulated A549 and RPMI 2650 cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!