Label-free detection of nanomolar unmodified single- and double-stranded DNA by using surface-enhanced Raman spectroscopy on Ag and Au colloids.

Chemistry

Innovative Molecular Materials Group, School of Chemistry & Chemical Engineering, Queen's University, Belfast BT9 5AG, UK.

Published: April 2012

Unlabelled single- and double-stranded DNA (ssDNA and dsDNA, respectively) has been detected at concentrations ≥10(-9) M by surface-enhanced Raman spectroscopy. Under appropriate conditions the sequences spontaneously adsorbed to the surface of both Ag and Au colloids through their nucleobases; this allowed highly reproducible spectra with good signal-to-noise ratios to be recorded on completely unmodified samples. This eliminated the need to promote absorption by introducing external linkers, such as thiols. The spectra of model ssDNA sequences contained bands of all the bases present and showed systematic changes when the overall base composition was altered. Initial tests also showed that small but reproducible changes could be detected between oligonucleotides with the same bases arranged in a different order. The spectra of five ssDNA sequences that correspond to different strains of the Escherichia coli bacterium were found to be sufficiently composition-dependent so that they could be differentiated without the need for any advanced multivariate data analysis techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201103520DOI Listing

Publication Analysis

Top Keywords

single- double-stranded
8
double-stranded dna
8
surface-enhanced raman
8
raman spectroscopy
8
ssdna sequences
8
label-free detection
4
detection nanomolar
4
nanomolar unmodified
4
unmodified single-
4
dna surface-enhanced
4

Similar Publications

Phosphorylation-dependent WRN-RPA interaction promotes recovery of stalled forks at secondary DNA structure.

Nat Commun

January 2025

Mechanisms, Biomarkers and Models Section - Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena, 299 - 00161, Rome, Italy.

The WRN protein is vital for managing perturbed replication forks. Replication Protein A strongly enhances WRN helicase activity in specific in vitro assays. However, the in vivo significance of RPA binding to WRN has largely remained unexplored.

View Article and Find Full Text PDF

The immune system and neuroinflammation are now well established in the aetiology of neurodegeneration. Previous studies of transcriptomic and gene association studies have highlighted the potential of the 2'-5' oligoadenylate synthetase 1 (OAS1) to play a role in Alzheimer's disease. OAS1 is a viral response gene, interferon-induced, dsRNA activated enzyme, which binds RNase L to degrade dsRNA, and has been associated with COVID-19 response.

View Article and Find Full Text PDF

Exploring the Potential of Genome-Wide Hybridization Capture Enrichment for Forensic DNA Profiling of Degraded Bones.

Genes (Basel)

December 2024

Australian Centre for Ancient DNA, The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5000, Australia.

Unlabelled: In many human rights and criminal contexts, skeletal remains are often the only available samples, and they present a significant challenge for forensic DNA profiling due to DNA degradation. Ancient DNA methods, particularly capture hybridization enrichment, have been proposed for dealing with severely degraded bones, given their capacity to yield results in ancient remains.

Background/objectives: This paper aims to test the efficacy of genome-wide capture enrichment on degraded forensic human remains compared to autosomal STRs analysis.

View Article and Find Full Text PDF

The Possible Crystallization Process in the Origin of Bacteria, Archaea, Viruses, and Mobile Elements.

Biology (Basel)

December 2024

Division of Biochemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan.

We propose a hypothesis for the simultaneous emergence of bacteria, archaea, viruses, and mobile elements by sequential and concrete biochemical pathways. The emergence process can be considered analogous to crystallization, where genetic and biochemical systems stabilize as organisms evolve from their common ancestor, the LUCA, which was a non-free-living pool of single operon type genomes including double-stranded (ds) DNA at an ancient submarine alkaline vent. Each dsDNA operon was transcribed by different systems in σ, TFIIB, or TBP genomes.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) holds promise as a cancer treatment modality due to its potential for enhanced therapy precision and safety. To enhance deep tissue penetration and minimize tissue adsorption and phototoxicity, developing photosensitizers activated by second near-infrared window (NIR-II) light shows significant potential. However, the efficacy of PDT is often impeded by tumor microenvironment hypoxia, primarily caused by irregular tumor vasculature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!