Nanobodies show favourable pharmacokinetic characteristics for tumor targeting, including high tumor-to-background-ratios. Labelled with a therapeutic radionuclide, nanobodies could be used as an adjuvant treatment option for HER2-overexpressing minimal residual disease. The therapeutic radionuclide Lutetium-177 is linked to the nanobody using a bifunctional chelator. The choice of the bifunctional chelator could affect the in vivo behaviour of the radiolabeled nanobody. Consequently, we compared four different bifunctional chelators - p-SCN-Bn-DOTA, DOTA-NHS-ester, CHX-A"-DTPA or 1B4M-DTPA - in order to select the optimal chemical link between Lutetium-177 and a HER2 targeting nanobody. MS results revealed different degrees of chelator-conjugation. High stability in time was observed, together with nanomolar affinities on HER2-expressing tumor cells. Ex vivo biodistributions as well as SPECT/micro-CT analyses showed high activities in tumors expressing medium HER2 levels with low background activity except for the kidneys. The 1B4M-DTPA-coupled conjugate was further evaluated in a high HER2-expressing tumor model. Here, tumor uptake values of 5.99 ± 0.63, 5.12 ± 0.17, 2.83 ± 0.36 and 2.47 ± 0.38 %IA/g were obtained at 1, 3, 24 and 48h p.i., which coincided with exceptionally low background values, except for the kidneys, and unprecedented tumor-to-background ratios. No specific binding was observed in a HER2-negative model. In conclusion, the in-house developed anti-HER2 nanobody 2Rs15dHIS can be successfully labeled with (177) Lu using different bifunctional chelators. Both macrocyclic and acyclic chelators show high stability in time. High specific tumor uptake combined with the lowest background uptake was measured using the 1B4M-DTPA-based conjugate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cmmi.491 | DOI Listing |
J Med Chem
January 2025
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
Thorium-227 (Th) is an α-emitting radionuclide currently under investigation for targeted alpha therapy. Available chelators used for this isotope suffer from challenging multistep syntheses. Here, we present the synthesis and preclinical evaluation of a novel bifunctional chelator, SCN-Bn-DOTHOPO, which contains an isothiocyanate group that is suitable for conjugation to biological molecules.
View Article and Find Full Text PDFACS Omega
December 2024
College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
Radiometal chelator conjugation is a cornerstone of radioimmunotherapy (RIT). Continued interest in selective placement of chelators remains an active topic of discussion in the field. With several simple site-specific methods being recently reported, it was of interest to investigate the benefits and potential drawbacks of the site-specific method with a full comparison to a more typical random conjugation method that is currently utilized in clinical applications.
View Article and Find Full Text PDFCell Biol Int
December 2024
School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
Rare genetic disorders are low in prevalence and hence there is little or no attention paid to them in the mainstream medical industry. One of the ultra-rare neuromuscular disorders, GNE myopathy is caused due to biallelic mutations in the bifunctional enzyme, GNE (UDP N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase). It catalyses the rate-limiting step in sialic acid biosynthesis.
View Article and Find Full Text PDFJ Med Chem
December 2024
Department of Molecular Medicine, Brain Korea 21 Four KNU Convergence Educational, Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Korea.
Radiolabeled antibodies are promising for targeted cancer imaging, but their structural integrity may suffer during bioconjugation and radiolabeling, leading to undetected aggregation. This study evaluates dynamic light scattering (DLS) as a complementary method to size-exclusion high-performance liquid chromatography (SEC-HPLC) for detecting aggregation in radiolabeled antibodies. Trastuzumab was conjugated with a NOTA bifunctional chelator at various ratios, radiolabeled with [Cu]CuCl, and analyzed by using DLS and SEC-HPLC before and after purification.
View Article and Find Full Text PDFEJNMMI Radiopharm Chem
December 2024
Department of Nuclear Medicine, Saarland University - Medical Center, Kirrbergerstrasse, 66421, Homburg, Germany.
Background: The NOTI chelating scaffold can readily be derivatized for bioconjugation without impacting its metal complexation/radiolabeling properties making it an attractive building block for the development of multimeric/-valent radiopharmaceuticals. The objective of the study was to further explore the potential of the NOTI chelating platform by preparing and characterizing homotrimeric PSMA radioconjugates in order to identify a suitable candidate for clinical translation.
Results: Altogether, three PSMA conjugates based on the NOTI-TVA scaffold with different spacer entities between the chelating unit and the Glu-CO-Lys PSMA binding motif were readily prepared by solid phase-peptide chemistry.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!