Persistent genomic instability in peripheral blood lymphocytes from Hodgkin lymphoma survivors.

Environ Mol Mutagen

Laboratorio de Cultivo de Tejidos, Departamento de Investigación en Genética Humana, Instituto Nacional de Pediatría, México.

Published: May 2012

Advances in cancer treatment have led to an increase in patient survival. However, exposure to genotoxic chemotherapeutic agents and ionizing radiation may induce persistent genetic damage in cancer survivors. In this study, we detected genomic instability in chromosomes of peripheral blood lymphocytes from Hodgkin lymphoma patients, 2-17 years after MOPP (nitrogen mustard, Oncovin, procarbazine, and prednisone) chemotherapy with or without radiotherapy. Samples were obtained from 11 healthy individuals, 5 pretreatment patients, and 20 posttreatment patients. Cytogenetic analysis with GTG banding was performed on 1,000 lymphocyte metaphases per donor to identify genomic instability, including numerical and structural chromosomal aberrations, at a resolution of 10 Mb across the entire genome. Our results showed that anticancer treatment did not induce significant differences in the frequency of aneuploidy among the three study groups. However, 1 of the 11 healthy individuals, and 13 of the 20 posttreatment patients had a high frequency of chromosomal breaks and gross chromosomal rearrangements. The types of aberrations observed were random and complex, consistent with persistent genomic instability that was induced by cancer treatment. Clonal expansion of cells with chromosomal lesions was observed in one posttreatment patient only. These findings show that anticancer treatments induce persistent genomic instability, but not aneuploidy. Chemotherapy may affect genes with a role in DNA damage surveillance or repair, which in turn allows the accumulation of nontargeted structural chromosomal damage in future generations of cells. This genomic instability may facilitate the development of second malignancies in Hodgkin lymphoma survivors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/em.21691DOI Listing

Publication Analysis

Top Keywords

genomic instability
24
persistent genomic
12
hodgkin lymphoma
12
peripheral blood
8
blood lymphocytes
8
lymphocytes hodgkin
8
lymphoma survivors
8
cancer treatment
8
induce persistent
8
healthy individuals
8

Similar Publications

Identification of the clinical and genetic characteristics of gliomas with gene fusions by integrated genomic and transcriptomic analysis.

Eur J Med Res

January 2025

Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou Avenue North No.1838, Guangzhou, 510515, Guangdong, People's Republic of China.

The identification of oncogenic gene fusions in diffuse gliomas may serve as potential therapeutic targets and prognostic indicators, representing a novel strategy for treating gliomas consistent with the principles of personalized medicine. This study identified detectable oncogene fusions in glioma patients through an integrated analysis of genomic and transcriptomic data, which encompassed whole exon sequencing and next-generation RNA sequencing. In addition, this study also conducted a comparison of the genetic characteristics, tumor microenvironment, mutation burden and survival between glioma patients with or without gene fusions.

View Article and Find Full Text PDF

Calcium hydroxide nanoparticles (Ca(OH)NPs) possess potent antimicrobial activities and unique physical and chemical properties, making them valuable across various fields. However, limited information exists regarding their effects on genomic DNA integrity and their potential to induce apoptosis in normal and cancerous human cell lines. This study thus aimed to evaluate the impact of Ca(OH)NPs on cell viability, genomic DNA integrity, and oxidative stress induction in human normal skin fibroblasts (HSF) and cancerous hepatic (HepG2) cells.

View Article and Find Full Text PDF

Impact of cuproptosis in gliomas pathogenesis with targeting options.

Chem Biol Interact

January 2025

Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece. Electronic address:

Gliomas constitute the most prevalent primary central nervous system tumors, often characterized by complex metabolic profile, genomic instability, and aggressiveness, leading to frequent relapse and high mortality rates. Traditional treatments are commonly ineffective because of gliomas increased heterogeneity, invasive characteristics and resistance to chemotherapy. Among several pathways affecting cellular homeostasis, cuproptosis has recently emerged as a novel type of programmed cell death, triggered by accumulation of copper ions.

View Article and Find Full Text PDF

True cancer stem cells exhibit relative degrees of dormancy and genomic stability.

Neoplasia

January 2025

Department of Pathology, Anatomy and Cell Biology and the Clinical and Translational Research Center of Excellence, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Boulevard, Nashville, TN 37208, USA.

Background: Cancer stem cells in human tumors have been defined by stem cell markers, embryonal signaling pathways and characteristic biology, ie., namely the ability to repopulate the proliferating population. However, even if these properties can be demonstrated within a tumor cell subpopulation, it does not mean that they are truly hierarchical stem cells because they could have been derived from the proliferating population in a reversible manner.

View Article and Find Full Text PDF

Huntington's disease, one of more than 50 inherited repeat expansion disorders, is a dominantly inherited neurodegenerative disease caused by a CAG expansion in HTT. Inherited CAG repeat length is the primary determinant of age of onset, with human genetic studies underscoring that the disease is driven by the CAG length-dependent propensity of the repeat to further expand in the brain. Routes to slowing somatic CAG expansion, therefore, hold promise for disease-modifying therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!