Inflammatory microenvironment signalling plays a crucial role in tumour progression (i.e. cancer cell proliferation, survival, angiogenesis and metastasis) in many types of human malignancies. However, the role of inflammation in brain tumour pathology remains poorly understood. Here, we report that interferon regulatory factor 7 is a crucial regulator of brain tumour progression and heterogeneity. Ectopic expression of interferon regulatory factor 7 in glioma cells promotes tumorigenicity, angiogenesis, microglia recruitment and cancer stemness in vivo and in vitro through induction of interleukin 6, C-X-C motif chemokine 1 and C-C motif chemokine 2. In particular, interferon regulatory factor 7-driven interleukin 6 plays a pivotal role in maintaining glioma stem cell properties via Janus kinase/signal transducer and activator of transcription-mediated activation of Jagged-Notch signalling in glioma cells and glioma stem cells derived from glioma patients.  Accordingly, the short hairpin RNA-mediated depletion of interferon regulatory factor 7 in glioma stem cells markedly suppressed interleukin 6-Janus kinase/signal transducer and activator of transcription-mediated Jagged-Notch-signalling pathway, leading to decreases in glioma stem cell marker expression, tumoursphere-forming ability, and tumorigenicity. Furthermore, in a mouse model of wound healing, depletion of interferon regulatory factor 7 suppressed tumour progression and decreased cellular heterogeneity. Finally, interferon regulatory factor 7 was overexpressed in patients with high-grade gliomas, suggesting its potential as an independent prognostic marker for glioma progression. Taken together, our findings indicate that interferon regulatory factor 7-mediated inflammatory signalling acts as a major driver of brain tumour progression and cellular heterogeneity via induction of glioma stem cell genesis and angiogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/aws028DOI Listing

Publication Analysis

Top Keywords

interferon regulatory
32
regulatory factor
32
glioma stem
24
tumour progression
16
stem cells
12
brain tumour
12
stem cell
12
glioma
10
interferon
8
factor
8

Similar Publications

During virus infection, the activation of the antiviral endoribonuclease, ribonuclease L (RNase L), by a unique ligand 2'-5'-oilgoadenylate (2-5A) causes the cleavage of single-stranded viral and cellular RNA targets, restricting protein synthesis, activating stress response pathways, and promoting cell death to establish broad antiviral effects. The immunostimulatory dsRNA cleavage products of RNase L activity (RL RNAs) recruit diverse dsRNA sensors to activate signaling pathways to amplify interferon (IFN) production and activate inflammasome, but the sensors that promote cell death are not known. In this study, we found that DEAH-box polypeptide 15 (DHX15) and retinoic acid-inducible gene I (Rig-I) are essential for apoptosis induced by RL RNAs and require mitochondrial antiviral signaling (MAVS), c-Jun amino terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK) for caspase-3-mediated intrinsic apoptosis.

View Article and Find Full Text PDF

Unlabelled: Di(2-ethhylhexyl) phthalate (DEHP) is a common plastic rubberizer. DEHP leaches from plastic matrices and is under increasing scrutiny as numerous studies have linked it to negative human health manifestations. Coxsackievirus B3 (CVB) is a human pathogen that typically causes subclinical infections but can sometimes cause severe diseases such as pancreatitis, myocarditis, and meningoencephalitis.

View Article and Find Full Text PDF

Strategies Used by SARS-CoV-2 to Evade the Innate Immune System in an Evolutionary Perspective.

Pathogens

December 2024

Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.

By the end of 2019, the COVID-19 pandemic, resulting from the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), had diffused widely across the globe, with 770 million infected individuals and over 7 million deaths reported. In addition to its high infectivity and pathogenicity and its rapid mutation rate, the unique capacity of SARS-CoV-2 to circumvent the immune system has also contributed to the widespread nature of this pandemic. SARS-CoV-2 elicits the onset of innate immune system activation and initiates antiviral responses once it has infected the host.

View Article and Find Full Text PDF

Environmental pollution poses a significant risk to public health, as demonstrated by the bioaccumulation of aluminum (Al) in colorectal cancer (CRC). This study aimed to investigate the potential mutagenic effect of Al bioaccumulation in CRC samples, linking it to the alteration of key mediators of cancer progression, including immune response biomarkers. Aluminum levels in 20 CRC biopsy samples were analyzed using inductively coupled plasma mass spectrometry (ICP-MS).

View Article and Find Full Text PDF

Plasmacytoid dendritic cells (pDCs) express Toll-like receptor 7 (TLR7) in the endosomes, recognize viral single-stranded RNA (ssRNA), and produce significant amounts of interferon (IFN)-α. Bovine lactoferrin (LF) enhances the response of IFN regulatory factors followed by the activation of IFN-sensitive response elements located in the promoter regions of the gene and IFN-stimulated genes in the TLR7 reporter THP-1 cells in the presence of R-848, a TLR7 agonist. In ex vivo experiments using human peripheral blood mononuclear cells, LF enhances IFN-α levels in the supernatant in the presence of R-848.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!