In microcoronary endothelial cells (RCEs) from spontaneously hypertensive rats (SHR), the nitric oxide (NO)/cyclic guanosine monophosphate (GMP)-dependent proteinkinase I (cGKI) pathway cannot regulate the cytosolic calcium ([Ca2+]i) dynamic as in RCEs from Wistar Kyoto rats (WKY). We investigated the altered downstream NO target in SHR cells and, since cGKI expression was low, whether the re-expression of cGKIα in SHR RCEs could restore NO calcium responsiveness. We measured [Ca2+]i dynamic by fura-2 imaging analysis and the cGKI level by RT-PCR and Western blot in SHR and WKY RCEs. Plasmids encoding for enhanced green fluorescence protein or cGKIα-enhanced green fluorescence protein were transiently transfected in SHR RCEs, and [Ca2+]i was evaluated. Angiotensin-II (AT-II) increased [Ca2+]i in a concentration-dependent way in both strains. Whereas in WKY, endogenously produced NO and cyclic GMP analog decreased the AT-II-induced [Ca2+]i transient, they were ineffective in SHR RCEs. The cGKI level was low in SHR cells. However, after cGKIα re-expression, endogenous NO decreased the AT-II-induced [Ca2+]i transient, while endothelial NO synthase and cGKI inhibition prevented it. The low expression of cGKI in SHR accounts for the absent regulation of the agonist-induced [Ca2+]i transient by the NO/cyclic GMP pathway. Studies on cGKI in humans could contribute to a better understanding of cardiovascular pathologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000332911 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!