The recent revolution in digital technologies and information processing methods present important opportunities to transform the way optical imaging is performed, particularly toward improving the throughput of microscopes while at the same time reducing their relative cost and complexity. Lensfree computational microscopy is rapidly emerging toward this end, and by discarding lenses and other bulky optical components of conventional imaging systems, and relying on digital computation instead, it can achieve both reflection and transmission mode microscopy over a large field-of-view within compact, cost-effective and mechanically robust architectures. Such high throughput and miniaturized imaging devices can provide a complementary toolset for telemedicine applications and point-of-care diagnostics by facilitating complex and critical tasks such as cytometry and microscopic analysis of e.g., blood smears, Pap tests and tissue samples. In this article, the basics of these lensfree microscopy modalities will be reviewed, and their clinically relevant applications will be discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3684710 | PMC |
http://dx.doi.org/10.3233/ACP-2012-0057 | DOI Listing |
J Xray Sci Technol
December 2024
Henan Key Laboratory of Imaging and Intelligent Processing, Information Engineering University, Zhengzhou, Henan, China.
Background: Coherent diffraction imaging (CDI) is an important lens-free imaging method. As a variant of CDI, ptychography enables the imaging of objects with arbitrary lateral sizes. However, traditional phase retrieval methods are time-consuming for ptychographic imaging of large-size objects, e.
View Article and Find Full Text PDFLight Sci Appl
September 2024
Smart Computational Imaging (SCI) Laboratory, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, 210094, Nanjing, Jiangsu, China.
Lens-free on-chip microscopy is a powerful and promising high-throughput computational microscopy technique due to its unique advantage of creating high-resolution images across the full field-of-view (FOV) of the imaging sensor. Nevertheless, most current lens-free microscopy methods have been designed for imaging only two-dimensional thin samples. Lens-free on-chip tomography (LFOCT) with a uniform resolution across the entire FOV and at a subpixel level remains a critical challenge.
View Article and Find Full Text PDFJ Biomed Opt
June 2024
University of Muenster, Biomedical Technology Center, Muenster, Germany.
Significance: Digital holographic microscopy (DHM) is a label-free microscopy technique that provides time-resolved quantitative phase imaging (QPI) by measuring the optical path delay of light induced by transparent biological samples. DHM has been utilized for various biomedical applications, such as cancer research and sperm cell assessment, as well as for drug or toxicity testing. Its lensless version, digital lensless holographic microscopy (DLHM), is an emerging technology that offers size-reduced, lightweight, and cost-effective imaging systems.
View Article and Find Full Text PDFSci Robot
May 2024
Department of Electronic & Computer Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China.
Sci Rep
May 2024
Mechatronics Research, Samsung Electronics Co., Ltd., 1-1 Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do, 18848, Korea.
The demand for high-resolution and large-area imaging systems for non-destructive wafer inspection has grown owing to the increasing complexity and extremely fine nature of semiconductor processes. Several studies have focused on developing high-resolution imaging systems; however, they were limited by the tradeoff between image resolution and field of view. Hence, computational imaging has arisen as an alternative method to conventional optical imaging, aimed at enhancing the aforementioned parameters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!