Tolerance mechanisms to salinity and drought stress are quite complex. Plants have developed a complex and elaborate signaling network that ensures their adaptation to this stress. For example, salinity tolerance is thought to be due to three main factors: Na(+) exclusion, tolerance to Na(+) in the tissues and osmotic tolerance. Recently, many transcription factors for tolerance to salt and drought stresses have been identified. In this study, multialignments of conserved domains in DREB1, WRKY1 transcription factors (TFs), and HKT-1 have been utilized to design specific primers in order to identify functional single nucleotide polymorphisms (SNPs). These primers have been used to probe on several genotypes of durum wheat that are differentially tolerant to salt and drought stress; they were grown in increasing concentrations of NaCl. The selected portions have been analyzed using high-resolution melting curve (HRM) technology that currently represents one of the most recent and powerful tools for detecting SNP and INDEL mutations. Analyzing the amplification profiles, observed in the resulting melting curves, samples corresponding to different treatment conditions were selected, sequenced, and aligned with the homolog sequences present in gene databases to identify and characterize potential SNP and INDEL mutations. The PCR amplicons, containing single and double SNPs, produced distinctive HRM profiles. By sequencing the polymerase chain reaction (PCR) products, several SNPs have been identified and validated. All the discovered mutations were able to generate changes in amino acid sequences of the corresponding proteins. Most of the identified SNPs were found in salt and drought tolerant durum wheat genotypes. These varieties are of great value for durum wheat breeding works.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/omi.2011.0081 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!