Intrinsic functional-connectivity networks for diagnosis: just beautiful pictures?

Brain Connect

Department of Neurology, Taub Institute, Columbia University, New York, New York 10032, USA.

Published: January 2013

Resting-state functional connectivity has become a topic of enormous interest in the Neuroscience community in the last decade. Because resting-state data (1) harbor important information that often is diagnostically relevant and (2) are easy to acquire, there has been a rapid increase in the development of a variety of network analytic techniques for diagnostic applications, stimulating methodological research in general. While we are among those who welcome the increased interest in the resting state and multivariate analytic tools, we would like to draw attention to some entrenched practices that undermine the scientific quality of diagnostic functional-connectivity research, but whose correction is relatively easy to accomplish. With the current commentary we also hope to benefit the field at large and contribute to a healthy debate about research goals and best practices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3621702PMC
http://dx.doi.org/10.1089/brain.2011.0021DOI Listing

Publication Analysis

Top Keywords

intrinsic functional-connectivity
4
functional-connectivity networks
4
networks diagnosis
4
diagnosis beautiful
4
beautiful pictures?
4
pictures? resting-state
4
resting-state functional
4
functional connectivity
4
connectivity topic
4
topic enormous
4

Similar Publications

Prediction of health anxiety using resting-state functional near-infrared spectroscopy and machine learning.

J Affect Disord

January 2025

Key Laboratory of Adolescent Cyberpsychology and Behaviour (Ministry of Education), Key Laboratory of Human Development and Mental Health of Hubei Province, National Intelligent Society Governance Experiment Base (Education), School of Psychology, Central China Normal University, Wuhan, China. Electronic address:

Background: The role of cortical networks in health anxiety remain poorly understood. This study aimed to develop a predictive model for health anxiety, using a machine-learning approach based on resting-state functional connectivity (rsFC) with functional near-infrared spectroscopy (fNIRS).

Method: One hundred and four university students experiencing school disclosure due to the Corona Virus Disease 2019 pandemic participated in the study, and the final sample consisted of 90 participants.

View Article and Find Full Text PDF

The purpose was to explore the spatial centrality of the whole brain functional network related to migraine and to investigate the potential functional hubs associated with migraine. 32 migraine patients and 55 healthy controls were recruited and they received resting-state functional magnetic resonance imaging voluntarily. Voxel-wise Degree Centrality (DC) was measured across the whole brain, and group differences in DC were compared.

View Article and Find Full Text PDF

Brain functional connectivity patterns exhibit distinctive, individualized characteristics capable of distinguishing one individual from others, like fingerprint. Accurate and reliable depiction of individualized functional connectivity patterns during infancy is crucial for advancing our understanding of individual uniqueness and variability of the intrinsic functional architecture during dynamic early brain development, as well as its role in neurodevelopmental disorders. However, the highly dynamic and rapidly developing nature of the infant brain presents significant challenges in capturing robust and stable functional fingerprint, resulting in low accuracy in individual identification over ages during infancy using functional connectivity.

View Article and Find Full Text PDF

Perception and production of music and speech rely on auditory-motor coupling, a mechanism which has been linked to temporally precise oscillatory coupling between auditory and motor regions of the human brain, particularly in the beta frequency band. Recently, brain imaging studies using magnetoencephalography (MEG) have also shown that accurate auditory temporal predictions specifically depend on phase coherence between auditory and motor cortical regions. However, it is not yet clear whether this tight oscillatory phase coupling is an intrinsic feature of the auditory-motor loop, or whether it is only elicited by task demands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!