We report for the first time the growth of GaAs nanowires directly on low-cost glass substrates using atmospheric pressure metal organic vapor phase epitaxy via a vapor-liquid-solid mechanism with gold as catalyst. Substrates used in this work were of float glass type typically seen in household window glasses. Growth of GaAs nanowires on glass were investigated for growth temperatures between 410 and 580 °C. Perfectly cylindrical nontapered nanowires with a growth rate of ~33 nm/s were observed at growth temperatures of 450 and 470 °C, whereas highly tapered pillar-like wires were observed at 580 °C. Nanowires grew horizontally on the glass surface at 410 °C with a tendency to grow in vertically from the substrate as the growth temperature was increased. X-ray diffraction and transmission electron microscopy revealed that the nanowires have a perfect zinc blende structure with no planar structural defects or stacking faults. Strong photoluminescence emission was observed both at low temperature and room temperature indicating a high optical quality of GaAs nanowires. Growth comparison on impurity free fused silica substrate suggests unintentional doping of the nanowires from the glass substrate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl204314z | DOI Listing |
Nanotechnology
December 2024
Ioffe Institute, Politekhnicheskaya st. 29, Sankt-Peterburg, 194021, RUSSIAN FEDERATION.
The processes of electrochemical deposition of Ni on vertically aligned GaAs nanowires (NWs) grown by molecular-beam epitaxy (MBE) using Au as a growth catalyst on Si(111) substrates were studied. Based on the results of electrochemical deposition, it was concluded that during the MBE synthesis of NWs the self-induced formation of conductive channels can occur inside NWs, thereby forming quasi core-shell nanowires. Depending on the length of the channel compare to the NW heights and the parameters of electrochemical deposition, the different hybrid metal-semiconductor nanostructures, such as Ni nanoparticles on GaAs NW side walls, Ni clusters on top ends of GaAs NWs, core-shell Ni/GaAs NWs, were obtained.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Physics, Universität Basel, Basel 4056, Switzerland.
A thermal diode, which, by analogy to its electrical counterpart, rectifies heat current, is the building block for thermal circuits. To realize a thermal diode, we demonstrate thermal rectification in a GaAs telescopic nanowire system using the thermal bridge method. We measured a preferred direction of heat flux, achieving rectification values ranging from 2 to 8% as a function of applied thermal bias.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia.
This study investigates the growth of gallium arsenide nanowires, using lead as a catalyst. Typically, nanowires are grown through the vapor-solid-liquid mechanism, where a key factor is the reduction in the nucleation barrier beneath the catalyst droplet. Arsenic exhibits limited solubility in conventional catalysts; however, this research explores an alternative scenario in which lead serves as a solvent for arsenic, while gallium and lead are immiscible liquids.
View Article and Find Full Text PDFNanotechnology
December 2024
School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
ACS Appl Mater Interfaces
November 2024
NEST Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, 56127 Pisa, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!