High-resolution single nucleotide polymorphism (SNP) arrays have been effectively implemented as a first tier test in clinical cytogenetics laboratories for the detection of constitutional chromosomal abnormalities in patients with suspected genomic disorders. We recently published our experience utilizing SNP array analysis of bone marrow aspirates as a clinical test for patients with suspected leukemia or lymphoma in the Clinical Cancer Cytogenetics Laboratory at The Children's Hospital of Philadelphia. In the present report we summarize our clinical experience using the Illumina HumanHap610 BeadChip array (Illumina, San Diego, CA) for whole genome analysis of pediatric solid tumors. A total of 168 DNA samples isolated from a variety of solid tumors, including brain tumors, sarcomas, neuroblastomas, and Wilms tumors, as well as benign neoplasms and reactive processes, were analyzed over a 2 1/2 year period. One hundred thirty-seven of 168 (82%) specimens had at least one copy number alteration or region of loss of heterozygosity detected by the SNP array. Thirty-three of 168 (20%) of cases had a normal karyotype or targeted fluorescence in situ hybridization (FISH) study, but had an abnormal finding by the array analysis. Sixty-three of 168 (37%) samples for which cytogenetic studies were unsuccessful or not performed demonstrated an abnormal array result. In 44 of 168 cases (26%) the array and karyotype or FISH were abnormal, but each demonstrated alterations not detected by the other methodology. Based on our experience in the last 2 1/2 years, we suggest that SNP array analysis can be used as a first tier clinical test for the majority of pediatric solid tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cancergen.2012.01.014DOI Listing

Publication Analysis

Top Keywords

solid tumors
16
snp array
12
array analysis
12
high-resolution single
8
single nucleotide
8
nucleotide polymorphism
8
patients suspected
8
clinical test
8
pediatric solid
8
array
7

Similar Publications

Apparent diffusion coefficient and magnetic resonance imaging characteristics in predicting response to radiosurgery in patients with vestibular schwannomas.

Neuroradiol J

January 2025

Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand.

Objective: Predicting treatment response in patients with vestibular schwannomas (VSs) remains challenging. This study aimed to evaluate the use of pre-treatment normalized apparent diffusion coefficient (nADC) values and magnetic resonance (MR) imaging characteristics in predicting treatment outcomes in patients with VSs undergoing radiosurgery.

Methods: The MR images of 44 patients with VSs who underwent radiosurgery at our institution were retrospectively reviewed, and the patients were categorized into tumor control ( = 28) and progression ( = 16) groups based on treatment response after treatment initiation, with a median follow-up duration of 29.

View Article and Find Full Text PDF

Therapies against hematological malignancies using chimeric antigen receptors (CAR)-T cells have shown great potential; however, therapeutic success in solid tumors has been constrained due to limited tumor trafficking and infiltration, as well as the scarcity of cancer-specific solid tumor antigens. Therefore, the enrichment of tumor-antigen specific CAR-T cells in the desired region is critical for improving therapy efficacy and reducing systemic on-target/off-tumor side effects. Here, we functionalized human CAR-T cells with superparamagnetic iron oxide nanoparticles (SPIONs), making them magnetically controllable for site-directed targeting.

View Article and Find Full Text PDF

Thanks to the identification of crucial molecular pathways, the therapeutic landscape for advanced differentiated thyroid tumors (DTCs) has significantly improved during the last ten years. The therapeutic scenario has been greatly impacted by the discovery of mutually exclusive gene changes in the MAPK and PI3K/AKT pathways, such as or fusions and pathogenic mutations of the and genes. Indeed, multi-kinase inhibitors and selective inhibitors have demonstrated outstanding efficacy for radioactive iodine-refractory (RAI-R) drug treatment, with overall response rates reaching up to 86%.

View Article and Find Full Text PDF

Ultraviolet (UV)-induced DNA mutations produce genetic drivers of cutaneous melanoma initiation and numerous neoantigens that can trigger anti-tumor immune responses in the host. Consequently, melanoma cells must rapidly evolve to evade immune detection by simultaneously modulating cell-autonomous epigenetic mechanisms and tumor-microenvironment interactions. Angiogenesis has been implicated in this process; although an increase of vasculature initiates the immune response in normal tissue, solid tumors manage to somehow enhance blood flow while preventing immune cell infiltration.

View Article and Find Full Text PDF

Cancer immunotherapy using engineered cytotoxic effector cells has demonstrated significant potential. The limited spatial complexity of existing models, however, poses a challenge to mechanistic studies attempting to approve existing approaches of effector cell-mediated cytotoxicity within a three-dimensional, solid tumor-like environment. To gain additional experimental control, we developed an approach for constructing three-dimensional (3D) culture models using smart polymers that form temperature responsive hydrogels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!