The catalytic core of a 10-23 DNAzyme was modified introducing conformationally restricted nucleosides such as (2'R)-, (2'S)-2'-deoxy-2'-C-methyluridine, (2'R)-, (2'S)-2'-deoxy-2'-C-methylcytidine, 2,2'-anhydrouridine and LNA-C, in one, two or three positions. Catalytic activities under pseudo first order conditions were compared at different Mg(2+) concentrations using a short RNA substrate. At low Mg(2+) concentrations, triple modified DNAzymes with similar kinetic performance to that displayed by the non-modified control were identified. In the search for a partial explanation of the obtained results, in silico studies were carried out in order to explore the conformational behavior of 2'-deoxy-2'-C-methylpyrimidines in the context of a loop structure, suggesting that at least partial flexibility is needed for the maintenance of activity. Finally, the modified 2'-C-methyl DNAzyme activity was tested assessing the inhibition of Stat3 expression and the decrease in cell proliferation using the human breast cancer cell line T47D.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2012.02.047DOI Listing

Publication Analysis

Top Keywords

conformationally restricted
8
mg2+ concentrations
8
influence conformationally
4
restricted pyrimidines
4
pyrimidines activity
4
activity 10-23
4
10-23 dnazymes
4
dnazymes catalytic
4
catalytic core
4
core 10-23
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!