Exploration and modulation of brain network interactions with noninvasive brain stimulation in combination with neuroimaging.

Eur J Neurosci

Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, USA.

Published: March 2012

Much recent work in systems neuroscience has focused on how dynamic interactions between different cortical regions underlie complex brain functions such as motor coordination, language and emotional regulation. Various studies using neuroimaging and neurophysiologic techniques have suggested that in many neuropsychiatric disorders, these dynamic brain networks are dysregulated. Here we review the utility of combined noninvasive brain stimulation and neuroimaging approaches towards greater understanding of dynamic brain networks in health and disease. Brain stimulation techniques, such as transcranial magnetic stimulation and transcranial direct current stimulation, use electromagnetic principles to alter brain activity noninvasively, and induce focal but also network effects beyond the stimulation site. When combined with brain imaging techniques such as functional magnetic resonance imaging, positron emission tomography and electroencephalography, these brain stimulation techniques enable a causal assessment of the interaction between different network components, and their respective functional roles. The same techniques can also be applied to explore hypotheses regarding the changes in functional connectivity that occur during task performance and in various disease states such as stroke, depression and schizophrenia. Finally, in diseases characterized by pathologic alterations in either the excitability within a single region or in the activity of distributed networks, such techniques provide a potential mechanism to alter cortical network function and architectures in a beneficial manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3313459PMC
http://dx.doi.org/10.1111/j.1460-9568.2012.08035.xDOI Listing

Publication Analysis

Top Keywords

brain stimulation
16
brain
10
noninvasive brain
8
dynamic brain
8
brain networks
8
stimulation techniques
8
stimulation
7
techniques
6
exploration modulation
4
modulation brain
4

Similar Publications

Gut Microbiota-Bone Axis.

Ann Nutr Metab

January 2025

Department of Translational Medical Science, University of Naples Federico II, Napoli, Italy.

Background: Knowledge of the complex interplay between gut microbiota and human health is gradually increasing as it has just recently been a field of such great interest.

Summary: Recent studies have reported that communities of microorganisms inhabiting the gut influence the immune system through cellular responses and shape many physiological and pathophysiological aspects of the body, including muscle and bone metabolism (formation and resorption). Specifically, the gut microbiota affects skeletal homeostasis through changes in host metabolism, the immune system, hormone secretion, and the gut-brain axis.

View Article and Find Full Text PDF

Exploring the Efficacy and Safety of Vagus Nerve Stimulation for the Treatment of Epilepsy in Patients With Sturge-Weber Syndrome: A Pilot Study.

Pediatr Neurol

January 2025

Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Epilepsy, Beijing, China; Center of Epilepsy, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China. Electronic address:

Background: Sturge-Weber syndrome (SWS) is a rare congenital neurocutaneous disorder, often complicated by epilepsy. Approximately 50% of patients with SWS with epilepsy develop drug-resistant seizures, leaving limited treatment options. Vagus nerve stimulation (VNS) is a known therapy for refractory epilepsy, modulating neural activity to reduce seizures.

View Article and Find Full Text PDF

Priming and release of cytokine IL-1β in microglial cells from the retina.

Exp Eye Res

January 2025

Department of Basic and Translational Science, Philadelphia, PA, 19104, United States; Department of Physiology, Philadelphia, PA, 19104, United States. Electronic address:

The P2X7 receptor (P2X7R) for extracellular ATP is implicated in several forms of retinal degeneration, including diabetic retinopathy, age-related macular degeneration, and glaucoma. P2X7R stimulation can trigger release of master cytokine IL-1β from microglia in the brain and from macrophages, but evidence of release from retinal microglia is indirect. Isolated mouse and rat retinal microglia, and wholemounts from CX3CR1 mice, were examined to determine if ATP induced IL-1β release directly from retinal microglial cells and if it also primed expression of IL-1β on an mRNA and protein level.

View Article and Find Full Text PDF

Note of concern regarding the sources of scientific evidence used to justify the Reclassification of Non-Invasive Brain Stimulation (NIBS) Devices without an intended medical purpose into Class III.

Brain Stimul

January 2025

Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) lab, Ghent University, Ghent, Belgium; Neuroprotection and Neuromodulation Research Group (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Psychiatry, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium; Center for Care and Cure Technology (C3Te), Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.

View Article and Find Full Text PDF

Outcomes of electroconvulsive therapy in adolescents with a depressive episode (depressive, bipolar disorders): a naturalistic retrospective cohort study.

Brain Stimul

January 2025

Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China. Electronic address:

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!