The synergistic effects of tamoxifen on the sensitivity of MCF-7 cells to daunorubicin have been reported. Whether the effects of daunorubicin on MCF-7/adr cells can be improved by tamoxifen in liposomes and how tamoxifen changes daunorubicin's behavior in vivo remains unclear. The aim of this study was to investigate the effects of tamoxifen on the uptake and biodistribution of daunorubicin liposomes by breast-cancer-resistant MCF-7/adr cells in vitro and in vivo. The uptake of liposomes by MCF-7/adr cells in vitro studies was measured using flow cytometry and laser confocal microscopy. The biodistributions of carriers and free drugs were evaluated by DiR dye using in vivo imaging. Tamoxifen obviously enhanced the cellular uptake of liposomes by MCF-7/adr cells in time-dependent manners. According to the results from in vivo imaging analysis, the mean fluorescence intensity of DiR liposomes with tamoxifen in the tumor regions of MCF-7/adr tumor-bearing nude mice was much stronger than that of DiR liposomes alone (16,450 ± 1,331 versus 3,666 ± 321; n = 3). Pegylated liposomes elongated the existence of daunorubicin in the circulatory system and the enhanced permeability and retention effect enhanced its concentration in local tumor tissues, which may provide the precondition for tamoxifen further promoting the uptake by MCF-7/Adr cells in vivo. Using daunorubicin liposomes and tamoxifen together generates better biodistribution profiles in tumor tissue than using daunorubicin liposomes only, which contributes to improving the therapeutic effect of breast cancer treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/08982104.2012.668552 | DOI Listing |
Phytomedicine
December 2024
Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, PR China. Electronic address:
Background: Tetramethylpyrazine (TMP), a key bioactive constituent derived from Ligusticum wallichii Franchat, has demonstrated efficacy in mitigating multidrug resistance (MDR) in human breast cancer (BC) cells. However, the precise mechanisms underlying its action remain poorly understood.
Purpose: Cancer stem cells (CSCs) are widely recognized as the primary contributors to MDR.
Front Pharmacol
December 2024
Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.
Background: Multidrug resistance (MDR), mainly caused by ATP-binding cassette transporters (ABCTs) efflux, makes it difficult for many anticancer drugs to treat breast cancer (BC). Phytochemicals can reverse cancer's MDR by modifying ABC transporter expression and function, as well as working synergistically with anticancer drugs to target other molecules. The reversal effect of the isoquinoline alkaloid coptisine (COP) was assessed on four breast cell lines; Two sensitive MCF-7 cell lines with positive estrogen, androgen, progesterone, and glucocorticoid receptors, as well as MDB-MB-231 cells with negative estrogen, progesterone, and HER2 receptors, and two doxorubicin-resistant cell lines, MCF-7/ADR and MDB-MB-231/ADR.
View Article and Find Full Text PDFBiomol Ther (Seoul)
January 2025
School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Bioeng Transl Med
September 2024
School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai People's Republic of China.
Chemotherapy treatment outcomes are severely restricted by multidrug resistance (MDR), in which tumors develop a multiple cross-resistance toward drug involving the pump and nonpump resistance mechanisms, resulting in drug efflux and defending against drug toxicity. Herein, we constructed a pH and near infrared (NIR) light responsive nanomedicine DOX@FG based on gold nanorods (GNRs) that demonstrated the potential to improve chemotherapy outcomes by overcoming MDR. DOX@FG was constructed by conjugating folic acid (FA) and doxorubicin (DOX) derivatives onto GNRs, where the DOX derivatives possessed an acid-labile hydrazone bond.
View Article and Find Full Text PDFFront Oncol
October 2024
Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China.
Ferroptosis is considered an effective method to overcome drug-resistant tumors. This study aims to use three FDA-approved biological materials, human serum albumin, D-α-tocopherol succinate, and indocyanine green, to construct a novel biocompatible nanomaterial named HTI-NPs, exploring its effect in drug-resistant breast cancer (MCF-7/ADR cells). The research results indicate that HTI-NPs can selectively inhibit the proliferation of MCF-7/ADR cells , accompanied by upregulating transferrin receptor, generating reactive oxygen species, and downregulating glutathione peroxidase 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!