The explicit polarization (X-Pol) method is a fragment-based quantum mechanical model, in which a macromolecular system or other large or complex system in solution is partitioned into monomeric fragments. The present study extends the original X-Pol method, where all fragments are treated using the same electronic structure theory, to multilevel representations, called multilevel X-Pol, in which different electronic structure methods are used to describe different fragments. The multilevel X-Pol method has been implemented into a locally modified version of Gaussian 09. A key ingredient that is used to couple interfragment electrostatic interactions at different levels of theory is the use of the response density for the post-self-consistent-field energy. (The response density is also called the generalized density.) The method is useful for treating fragments in a small region of the system such as a solute molecule or the substrate and amino acids in the active site of an enzyme with a high-level theory, and the fragments in the rest of the system by a lower-level and computationally more efficient method. Multilevel X-Pol is illustrated here by applications to hydrogen bonding complexes in which one fragment is treated with the hybrid M06 density functional, Møller-Plesset perturbation theory, or coupled cluster theory, and the other fragments are treated by Hartree-Fock theory or the B3LYP or M06 hybrid density functionals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376169PMC
http://dx.doi.org/10.1021/jp212399gDOI Listing

Publication Analysis

Top Keywords

multilevel x-pol
16
x-pol method
12
quantum mechanical
8
fragments treated
8
electronic structure
8
response density
8
theory fragments
8
fragments
7
method
6
theory
6

Similar Publications

Explicit polarization: a quantum mechanical framework for developing next generation force fields.

Acc Chem Res

September 2014

Theoretical Chemistry Institute, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun, Jilin Province 130028, People's Republic of China.

Conspectus Molecular mechanical force fields have been successfully used to model condensed-phase and biological systems for a half century. By means of careful parametrization, such classical force fields can be used to provide useful interpretations of experimental findings and predictions of certain properties. Yet, there is a need to further improve computational accuracy for the quantitative prediction of biomolecular interactions and to model properties that depend on the wave functions and not just the energy terms.

View Article and Find Full Text PDF

The explicit polarization (X-Pol) method is a fragment-based quantum mechanical model, in which a macromolecular system or other large or complex system in solution is partitioned into monomeric fragments. The present study extends the original X-Pol method, where all fragments are treated using the same electronic structure theory, to multilevel representations, called multilevel X-Pol, in which different electronic structure methods are used to describe different fragments. The multilevel X-Pol method has been implemented into a locally modified version of Gaussian 09.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!