Transmission eigenvalue distributions in highly conductive molecular junctions.

Beilstein J Nanotechnol

Departments of Chemistry and Physics, University of California, Irvine, California 92697, USA.

Published: August 2012

Background: The transport through a quantum-scale device may be uniquely characterized by its transmission eigenvalues τ(n). Recently, highly conductive single-molecule junctions (SMJ) with multiple transport channels (i.e., several τ(n) > 0) have been formed from benzene molecules between Pt electrodes. Transport through these multichannel SMJs is a probe of both the bonding properties at the lead-molecule interface and of the molecular symmetry.

Results: We use a many-body theory that properly describes the complementary wave-particle nature of the electron to investigate transport in an ensemble of Pt-benzene-Pt junctions. We utilize an effective-field theory of interacting π-electrons to accurately model the electrostatic influence of the leads, and we develop an ab initio tunneling model to describe the details of the lead-molecule bonding over an ensemble of junction geometries. We also develop a simple decomposition of transmission eigenchannels into molecular resonances based on the isolated resonance approximation, which helps to illustrate the workings of our many-body theory, and facilitates unambiguous interpretation of transmission spectra.

Conclusion: We confirm that Pt-benzene-Pt junctions have two dominant transmission channels, with only a small contribution from a third channel with τ(n) << 1. In addition, we demonstrate that the isolated resonance approximation is extremely accurate and determine that transport occurs predominantly via the HOMO orbital in Pt-benzene-Pt junctions. Finally, we show that the transport occurs in a lead-molecule coupling regime where the charge carriers are both particle-like and wave-like simultaneously, requiring a many-body description.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3304317PMC
http://dx.doi.org/10.3762/bjnano.3.5DOI Listing

Publication Analysis

Top Keywords

highly conductive
8
many-body theory
8
pt-benzene-pt junctions
8
transmission
5
transmission eigenvalue
4
eigenvalue distributions
4
distributions highly
4
conductive molecular
4
junctions
4
molecular junctions
4

Similar Publications

Sclerosis is a highly morbid manifestation of chronic GVHD (cGVHD), associated with distressing symptoms and significant long-term disability. A patient-reported outcome measure (PRO) for cGVHD-associated sclerosis is essential to advance therapeutic trials. We aimed to develop a PRO for adults with cGVHD-associated sclerosis and evaluate and refine its content validity.

View Article and Find Full Text PDF

Chronic pain is a wide-spread condition that is debilitating and expensive to manage, costing the United States alone around $600 billion in 2010. In a common symptom of chronic pain called allodynia, non-painful stimuli produce painful responses with highly variable presentations across individuals. While the specific mechanisms remain unclear, allodynia is hypothesized to be caused by the dysregulation of excitatory-inhibitory (E-I) balance in pain-processing neural circuitry in the dorsal horn of the spinal cord.

View Article and Find Full Text PDF

Purpose: Adolescent and young adult (AYA) malignant brain tumour (BT) survivors are at risk of adverse health outcomes, which may impact their health-related quality of life (HRQoL). This study aimed to investigate the (1) prevalence of physical and psychological adverse health outcomes, (2) the HRQoL, and (3) the association of adverse health outcomes and HRQoL among long-term AYA-BT survivors. Adverse health outcomes and HRQoL were compared to other AYA cancer (AYAC) survivors.

View Article and Find Full Text PDF

Mechanically Robust Bismuth-Embedded Carbon Microspheres for Ultrafast Charging and Ultrastable Sodium-Ion Batteries.

J Am Chem Soc

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen 361005, China.

Advancements in the development of fast-charging and long-lasting microstructured alloying anodes with high volumetric capacities are essential for enhancing the operational efficiency of sodium-ion batteries (SIBs). These anodes, however, face challenges such as declined cyclability and rate capability, primarily due to mechanical degradation reduced by significant volumetric changes (over 252%) and slow kinetics of sodium-ion storage. Herein, we introduce a novel anode design featuring densely packed bismuth (Bi) embedded within highly conductive carbon microspheres to overcome the aforementioned challenges.

View Article and Find Full Text PDF

Hydrogen Bonding-Driven Adaptive Coacervates as Protocells.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.

Coacervation based on liquid-liquid phase separation (LLPS) has been widely used for the preparation of artificial protocells and to mimic the dynamic organization of membrane-free organelles. Most complex synthetic coacervates are formed through electrostatic interactions but cannot withstand high ionic strength conditions (>0.1 M).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!