Excessive exposure to loud noise can damage the cochlea and create a hearing loss. These pathologies coincide with a range of CNS changes including reorganisation of frequency representation, alterations in the pattern of spontaneous activity and changed expression of excitatory and inhibitory neurotransmitters. Moreover, damage to the cochlea is often accompanied by acoustic disorders such as hyperacusis and tinnitus, suggesting that one or more of these neuronal changes may be involved in these disorders, although the mechanisms remain unknown. We tested the hypothesis that excessive noise exposure increases expression of markers of excitation and plasticity, and decreases expression of inhibitory markers over a 32-day recovery period. Adult rats (n = 25) were monaurally exposed to a loud noise (16 kHz, 1/10(th) octave band pass (115 dB SPL)) for 1-hour, or left as non-exposed controls (n = 5). Animals were euthanased at either 0, 4, 8, 16 or 32 days following acoustic trauma. We used Western Blots to quantify protein levels of GABA(A) receptor subunit α1 (GABA(A)α1), Glutamic-Acid Decarboxylase-67 (GAD-67), N-Methyl-D-Aspartate receptor subunit 2A (NR2A), Calbindin (Calb1) and Growth Associated Protein 43 (GAP-43) in the Auditory Cortex (AC), Inferior Colliculus (IC) and Dorsal Cochlear Nucleus (DCN). Compared to sham-exposed controls, noise-exposed animals had significantly (p<0.05): lower levels of GABA(A)α1 in the contralateral AC at day-16 and day-32, lower levels of GAD-67 in the ipsilateral DCN at day-4, lower levels of Calb1 in the ipsilateral DCN at day-0, lower levels of GABA(A)α1 in the ipsilateral AC at day-4 and day-32. GAP-43 was reduced in the ipsilateral AC for the duration of the experiment. These complex fluctuations in protein expression suggests that for at least a month following acoustic trauma the auditory system is adapting to a new pattern of sensory input.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3299769 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0033272 | PLOS |
J Comp Neurol
January 2025
Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia, USA.
Glutamate delta receptor 1 (GluD1) is a unique synaptogenic molecule expressed at excitatory and inhibitory synapses. The lateral habenula (LHb), a subcortical structure that regulates negative reward prediction error and major monoaminergic systems, is enriched in GluD1. LHb dysfunction has been implicated in psychiatric disorders such as depression and schizophrenia, both of which are associated with GRID1, the gene that encodes GluD1.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Biology, Boston University, Boston, MA 02215, USA; Center for Neurophotonics, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Center for Systems Neuroscience, Boston University, Boston MA 02215, USA. Electronic address:
Task learning involves learning associations between stimuli and outcomes and storing these relationships in memory. While this information can be reliably decoded from population activity, individual neurons encoding this representation can drift over time. The circuit or molecular mechanisms underlying this drift and its role in learning are unclear.
View Article and Find Full Text PDFNeurochem Res
January 2025
Departments of Pediatrics and Systems Pharmacology & Translational Therapeutics, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104-4318, USA.
In mice engineered to express enhanced green fluorescent protein (eGFP) under the control of the entire glutamate transporter 1 (GLT1) gene, eGFP is found in all 'adult' cortical astrocytes. However, when 8.3 kilobases of the human GLT1/EAAT2 promoter is used to control expression of tdTomato (tdT), tdT is only found in a subpopulation of these eGFP-expressing astrocytes.
View Article and Find Full Text PDFMatrix Biol
January 2025
German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany. Electronic address:
The neural extracellular matrix (ECM) accumulates in the form of perineuronal nets (PNNs), particularly around fast-spiking GABAergic interneurons in the cortex and hippocampus, but also around synapses and in association with the axon initial segments (AIS) and nodes of Ranvier. Increasing evidence highlights the role of Neurocan (Ncan), a brain-specific component of ECM, in the pathophysiology of neuropsychiatric disorders like bipolar disorder and schizophrenia. Ncan localizes at PNNs, perisynaptically, and at the nodes of Ranvier and the AIS, highlighting its potential role in regulating axonal excitability.
View Article and Find Full Text PDFNeurobiol Dis
January 2025
Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria. Electronic address:
Background: Fabry disease (FD) patients are known to be at high risk of developing neuropsychiatric symptoms such as anxiety, depression and cognitive deficits. Despite this, they are underdiagnosed and inadequately treated. It is unknown whether these symptoms arise from pathological glycosphingolipid deposits or from cerebrovascular abnormalities affecting neuronal functions in the central nervous system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!