Background: Aphids are agricultural pests of great economical interest. Alternatives to insecticides, using semiochemicals, are of difficult applications. In fact, sex pheromones are of little use as aphids reproduce partenogenetically most of the time. Besides, the alarm pheromone, (E)-ß-farnesene for a great number of species, is difficult to synthesize and unstable in the environment. The search for novel semiochemicals to be used in population control can be efficiently approached through the study of the olfactory system at the biochemical level. Recently odorant-binding proteins (OBPs) have been shown to play a central role in olfactory recognition, thus becoming the target of choice for designing new semiochemicals.

Methodology/principal Findings: To address the question of how the alarm message is recognised at the level of OBPs, we have tested 29 compounds, including (E)-ß-farnesene, in binding assays with 6 recombinant proteins and in behaviour experiments. We have found that good repellents bind OBP3 and/or OBP7, while non repellents present different spectra of binding. These results have been verified with two species of aphids, Acyrthosiphon pisum and Myzus persicae, both using (E)-ß-farnesene as the alarm pheromone.

Conclusions: Our results represent further support to the idea (so far convincingly demonstrated only in Drosophila) that OBPs are involved in decoding the chemical information of odorants and pheromones, and for the first time provide such evidence in other insect species and using wild-type insects. Moreover, the data offer guidelines and protocols for the discovery of potential alarm pheromones, using ligand-binding assays as a preliminary screening before subjecting selected compounds to behaviour tests.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3299684PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0032759PLOS

Publication Analysis

Top Keywords

odorant-binding proteins
8
alarm pheromone
8
pheromone e-ß-farnesene
8
alarm
5
proteins mediate
4
mediate behavioural
4
behavioural response
4
aphids
4
response aphids
4
aphids alarm
4

Similar Publications

Molecular evidence for the role of the ovipositor of the fall armyworm: Where to lay or not to lay?

Insect Sci

January 2025

Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China.

Oviposition behavior in insects has received considerable attention, but studies have mainly focused on the antennae, neglecting the role of the ovipositor. In this study, we investigated the functional characteristics of the ovipositor in oviposition site selection by the fall armyworm (FAW) Spodoptera frugiperda, a destructive invasive pest of maize and other cereals. In oviposition choice assays females exhibited significant repellency to isothiocyanate (ITC), volatiles specific to non-preferred cruciferous plants.

View Article and Find Full Text PDF

Characterization of the ligand-binding properties of odorant-binding protein 38 from when interacting with soybean volatiles.

Front Physiol

January 2025

Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, IPM Innovation Center of Hebei Province, International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding, China.

Background: (Fabricius) (Hemiptera: Alydidae) is a major soybean pest throughout East Asia that relies on its advanced olfactory system for the perception of plant-derived volatile compounds and aggregation pheromones for conspecific and host plant localization. Odorant binding proteins (OBPs) facilitate the transport of odorant compounds across the sensillum lymph within the insect olfactory system, enabling their interaction with odorant receptors (ORs).

Methods: Real-time quantitative PCR (qRT-PCR) analyses, fluorescence-based competitive binding assays, and molecular docking analyses were applied to assess the expression and ligand-binding properties of OBP38 from .

View Article and Find Full Text PDF

Using natural enemies provides a sustainable method to control major agricultural pests. Hoverflies are significant natural enemies of aphids and efficient pollinators. Herbivore-induced plant volatiles (HIPVs), including ()-β-farnesene (EBF) and methyl salicylate (MeSA), are key olfactory cues mediating hoverflies behavior.

View Article and Find Full Text PDF

The expansion and loss of specific olfactory genes in relatives of parasitic lice, the stored-product psocids (Psocodea: Liposcelididae).

BMC Genomics

January 2025

Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China.

Background: Booklice, belonging to the genus Liposcelis (Psocodea: Liposcelididae), commonly known as psocids, infest a wide range of stored products and are implicated in the transmission of harmful microorganisms such as fungi and bacteria. The olfactory system is critical for insect feeding and reproduction. Elucidating the molecular mechanisms of the olfactory system in booklice is crucial for developing effective control strategies.

View Article and Find Full Text PDF

AmelOBP4: an antenna-specific odor-binding protein gene required for olfactory behavior in the honey bee (Apis mellifera).

Front Zool

January 2025

Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, People's Republic of China.

Background: Odorant binding proteins (OBPs) initiate the process of odorant perception. Numerous investigations have demonstrated that OBPs bind a broad variety of chemicals and are more likely to carry pheromones or odor molecules with high binding affinities. However, few studies have investigated its effects on insect behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!