Nanomechanical characterization of the stiffness of eye lens cells: a pilot study.

Invest Ophthalmol Vis Sci

Division for Marine and Environmental Research, Ruder Boskovic Institute, Zagreb, Croatia.

Published: April 2012

Purpose: The purpose of this study is to probe the mechanical properties of individual eye lens cells isolated from nucleus and cortex of adult sheep eye lens, and to characterize the effect of cytoskeletal drugs.

Methods: We used atomic force microscopy (AFM), featuring a spherical tip at the end of a soft cantilever, to indent single lens cells, and measure the Young's modulus of isolated nuclear and cortical lens cells. Measurements were performed under basal conditions, and after addition of drugs that disrupt actin filaments and microtubules.

Results: We found that single lens cells were able to maintain their shape and mechanical properties after being isolated from the lens tissue. The median Young's modulus value for nuclear lens cells (4.83 kPa) was ~ 20-fold higher than for cortical lens cells (0.22 kPa). Surprisingly, disruption of actin filaments and microtubules did not affect the measured Young's moduli.

Conclusions: We found that single cells from the lens nucleus and cortex can be distinguished unambiguously using the elastic modulus as a criterion. The uncommon maintenance of shape and elastic properties after cell isolation together with the null effect of actin filaments and microtubules targeting drugs suggest that the mechanical stability of fiber cells is provided by cellular elements other than the usual cytoskeletal proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.11-8676DOI Listing

Publication Analysis

Top Keywords

lens cells
28
eye lens
12
actin filaments
12
lens
10
cells
9
mechanical properties
8
nucleus cortex
8
single lens
8
young's modulus
8
cortical lens
8

Similar Publications

The high risks of traumatic cataract treatments promoted the development of the concept of autologous lens regeneration. Biochemical cues can influence the cellular behavior of stem cells, and in this case, biophysical cues may be the important factors in producing rapid activation of cellular behavior. Here we bio-printed mesenchymal stem cells (MSCs) using a commonly used bioink sodium alginate-gelatin blends, and investigated the induction effect of MSC differentiation towards lens epithelial stem cells (LESCs) under a combination of biochemical cues and biophysical cues.

View Article and Find Full Text PDF

Background: Human anterior lens capsules (ALCs) have great potential in the treatment of multiple eye diseases, including corneal ulcers, glaucoma, age-related macular degeneration and macular holes. ALCs are also regarded as promising scaffolds for various ocular cells. Here, we investigated different decellularization methods for removing lens epithelial cells (LECs) that adhered to ALCs.

View Article and Find Full Text PDF

Here, we report the spatial organization of RNA transcription and associated enhancer dynamics in the human spinal cord at single-cell and single-molecule resolution. We expand traditional multiomic measurements to reveal epigenetically poised and bivalent active transcriptional enhancer states that define cell type specification. Simultaneous detection of chromatin accessibility and histone modifications in spinal cord nuclei reveals previously unobserved cell-type specific cryptic enhancer activity, in which transcriptional activation is uncoupled from chromatin accessibility.

View Article and Find Full Text PDF

RNA-binding proteins (RBPs) are critical regulators of mRNAs controlling all processes such as RNA transcription, transport, localization, translation, mRNA:ncRNA interactions, and decay. Cellular differentiation is driven by tissue-specific and/or tissue-preferred expression of proteins needed for the optimal function of mature cells, tissues and organs. Lens fiber cell differentiation is marked by high levels of expression of crystallin genes encoding critical proteins for lens transparency and light refraction.

View Article and Find Full Text PDF

Liquid Crystalline Networks Hamper the Malignancy of Cancer Cells.

Adv Healthc Mater

January 2025

Department of Clinical and Experimental Biomedical Sciences, University of Florence, Viale G.B. Morgagni, 50, Florence, 50134, Italy.

Mimicking compositions and structures of extracellular matrix is widely studied to create in vitro tumor models, to deepen the understanding of the pathogenesis of the different types of cancer, and to identify new therapies. On the other hand, the use of synthetic materials to modulate cancer cell biology and, possibly, to reduce the malignancy of cancer cells through their exploitation is far less explored. Here, the study evaluates the effects of Liquid Crystalline Networks (LCNs) based scaffolds on the growth of A375 metastatic melanoma cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!