A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting glaucomatous progression in glaucoma suspect eyes using relevance vector machine classifiers for combined structural and functional measurements. | LitMetric

Purpose: The goal of this study was to determine if glaucomatous progression in suspect eyes can be predicted from baseline confocal scanning laser ophthalmoscope (CSLO) and standard automated perimetry (SAP) measurements analyzed with relevance vector machine (RVM) classifiers.

Methods: Two hundred sixty-four eyes of 193 participants were included. All eyes had normal SAP results at baseline with five or more SAP tests over time. Eyes were labeled progressed (n = 47) or stable (n = 217) during follow-up based on SAP Guided Progression Analysis or serial stereophotograph assessment. Baseline CSLO-measured topographic parameters (n = 117) and baseline total deviation values from the 24-2 SAP test-grid (n = 52) were selected from each eye. Ten-fold cross-validation was used to train and test RVMs using the CSLO and SAP features. Receiver operating characteristic (ROC) curve areas were calculated using full and optimized feature sets. ROC curve results from RVM analyses of CSLO, SAP, and CSLO and SAP combined were compared to CSLO and SAP global indices (Glaucoma Probability Score, mean deviation and pattern standard deviation).

Results: The areas under the ROC curves (AUROCs) for RVMs trained on optimized feature sets of CSLO parameters, SAP parameters, and CSLO and SAP parameters combined were 0.640, 0.762, and 0.805, respectively. AUROCs for CSLO Glaucoma Probability Score, SAP mean deviation (MD), and SAP pattern standard deviation (PSD) were 0.517, 0.513, and 0.620, respectively. No CSLO or SAP global indices discriminated between baseline measurements from progressed and stable eyes better than chance.

Conclusions: In our sample, RVM analyses of baseline CSLO and SAP measurements could identify eyes that showed future glaucomatous progression with a higher accuracy than the CSLO and SAP global indices. (ClinicalTrials.gov numbers, NCT00221897, NCT00221923.).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760232PMC
http://dx.doi.org/10.1167/iovs.11-7951DOI Listing

Publication Analysis

Top Keywords

cslo sap
32
sap
16
glaucomatous progression
12
sap global
12
global indices
12
cslo
11
suspect eyes
8
relevance vector
8
vector machine
8
sap measurements
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!