Purpose. Super-selective intra-ophthalmic artery chemotherapy (SSIOAC) is an eye-targeted drug-delivery strategy to treat retinoblastoma, the most prevalent primary ocular malignancy in children. Unfortunately, recent clinical reports associate adverse vascular toxicities with SSIOAC using melphalan, the most commonly used chemotherapeutic. Methods. To explore reasons for the unexpected vascular toxicities, we examined the effects of melphalan, as well as carboplatin (another chemotherapeutic used with retinoblastoma), in vitro using primary human retinal endothelial cells, and in vivo using a non-human primate model, which allowed us to monitor the retina in real time during SSIOAC. Results. Both melphalan and carboplatin triggered human retinal endothelial cell migration, proliferation, apoptosis, and increased expression of adhesion proteins intracellullar adhesion molecule-1 [ICAM-1] and soluble chemotactic factors (IL-8). Melphalan increased monocytic adhesion to human retinal endothelial cells. Consistent with these in vitro findings, histopathology showed vessel wall endothelial cell changes, leukostasis, and vessel occlusion. Conclusions. These results reflect a direct interaction of chemotherapeutic drugs with both the vascular endothelium and monocytes. The vascular toxicity may be related to the pH, the pulsatile delivery, or the chemotherapeutic drugs used. Our long-term goal is to determine if changes in the drug of choice and/or delivery procedures will decrease vascular toxicity and lead to better eye-targeted treatment strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3995559PMC
http://dx.doi.org/10.1167/iovs.12-9466DOI Listing

Publication Analysis

Top Keywords

vascular toxicity
12
endothelial cell
12
human retinal
12
retinal endothelial
12
intra-ophthalmic artery
8
artery chemotherapy
8
vascular toxicities
8
ssioac melphalan
8
endothelial cells
8
chemotherapeutic drugs
8

Similar Publications

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is an important environmental pollutant that disturbs the immune balance of the maternal-fetal interface (MFI) and is also a common environmental factor for the formation of cleft palate (CP). Therefore, the purpose is to investigate whether TCDD can cause CP by disrupting the immune balance of the maternal-fetal interface. Fifteen C57BL/6J mice were randomly assigned to three groups: control group, TCDD group, and TCDD plus Freund's complete adjuvant (FCA) (TCDD + FCA) group.

View Article and Find Full Text PDF

Vascular-like tissues composed of cells maintaining their shape and structure at any position in a culture dish without the use of gels or other artificial materials are ideal vascular models to test the effects of candidate drugs on cells without adsorption by artificial materials and analysis of structural changes over time. In this study, we aimed to prepare fiber-shaped cell aggregates composed of human umbilical vein endothelial and mesenchymal stem cells as vascular pericytes anchored to the bottom of culture dishes at a defined location using our developed cell self-aggregation technique and dumbbell-shaped culture groove. The fiber-shaped cell aggregates maintained their shape for at least two weeks without rupture, and histological analysis revealed that they formed a unique tissue structure with a gapless endothelial layer on the outer surface and capillary-like structures oriented in the same direction as the long axis of the fiber in the medial side.

View Article and Find Full Text PDF

Self-propelled micro/nanomotors (MNMs) represent a groundbreaking advancement in precision drug delivery, offering potential solutions to persistent challenges such as systemic toxicity, limited bioavailability, and nonspecific distribution. By transforming various energy sources into mechanical motion, MNMs are able to autonomously navigate through complex physiological environments, facilitating targeted delivery of therapeutic agents to previously inaccessible regions. However, to achieve efficient in vivo drug delivery, biomedical MNMs must demonstrate their ability to overcome crucial physiological barriers encompassing mucosal surfaces, blood flow dynamics, vascular endothelium, and cellular membrane.

View Article and Find Full Text PDF

King cobra () venom comprises a diverse array of proteins and peptides. However, the roles and properties of these individual components are still not fully understood. Among these, Cysteine-rich secretory proteins (CRiSPs) are recognized but not fully characterized.

View Article and Find Full Text PDF

Endothelial Dysfunction and Cardiovascular Disease: Hyperbaric Oxygen Therapy as an Emerging Therapeutic Modality?

J Cardiovasc Dev Dis

December 2024

Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia.

Maintaining the physiological function of the vascular endothelium and endothelial glycocalyx is crucial for the prevention of cardiovascular disease, which is one of the leading causes of morbidity and mortality worldwide. Damage to these structures can lead to atherosclerosis, hypertension, and other cardiovascular problems, especially in individuals with risk factors such as diabetes and obesity. Endothelial dysfunction is associated with ischemic disease and has a negative impact on overall cardiovascular health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!