Pain is the major symptom of osteoarthritis (OA) and the main reason for patients seeking medical care, but its treatment is not optimal. Animal studies are necessary to elucidate mechanisms underlying OA-induced pain and assess analgesics' efficacy. Previously, we showed that the Knee-Bend test and dynamic weight bearing by the CatWalk test are clinically relevant methods for assessing movement-induced nociception in the mono-iodoacetate (MIA) OA model. Using the same tests, in the present study we investigate the effects of lidocaine (5 mg, 10% solution, intra-articular), morphine (6 mg/kg, subcutaneous) and diclofenac (30 mg/kg per os) on nociceptive behavior in OA animals, on days 3 and 20 of OA evolution. Morphine reduced nociceptive behavior in both tests at both time-points. Lidocaine also decreased nociceptive behavior in both tests on day 3, but on day 20 only reduced the Knee-Bend score. Diclofenac was highly effective in both tests on day 3, while on day 20 it induced a less pronounced decrease in the Knee-Bend score and was ineffective in the CatWalk test. The results showed that the Knee-Bend and CatWalk tests are reliable alternative methods for evaluating movement-induced nociception in OA animals, and measure nociception in a clinically relevant way, since an analgesic profile similar to the one described in humans was observed. Therefore, these tests might be important as good predictors of drug efficacy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pbb.2012.03.003 | DOI Listing |
J Integr Neurosci
February 2024
Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, 200030 Shanghai, China.
Background: Bone cancer pain (BCP) is a common primary or metastatic bone cancer complication. Netrin-1 plays an essential role in neurite elongation and pain sensitization. This study aimed to determine the role of netrin-1 from the metastatic bone microenvironment in BCP development and identify the associated signaling pathway for the strategy of BCP management.
View Article and Find Full Text PDFLasers Med Sci
April 2023
Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
High-frequency near-infrared (NIR) semiconductor laser-irradiation has an unclear effect on nociception in the compressed lateral periodontal ligament region, a peripheral nerve region. This study aimed to investigate the effects of NIR semiconductor laser irradiation, with a power of 120 J, on inflammatory pain markers and neuropeptides induced in the compressed lateral periodontal ligament area during ETM. A NIR semiconductor laser [910 nm wavelength, 45 W maximum output power, 300 mW average output power, 30 kHz frequency, and 200 ns pulse width (Lumix 2; Fisioline, Verduno, Italy)] was used.
View Article and Find Full Text PDFJ Appl Physiol (1985)
October 2022
Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
Eur J Phys Rehabil Med
April 2022
Department of Pain Management and Research, Norwegian National Advisory Unit on Neuropathic Pain, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway.
Introduction: The analgesic action of localized vibration (LV), which is used in rehabilitation medicine to treat various clinical conditions, is usually attributed to spinal gate control, but is actually more complex. The aim of this review is: 1) to provide neurophysiological insights into the mechanisms underlying the ways in which afferent activity set up by LV induces analgesia through interactions with the nociceptive system throughout the nervous system; 2) to give a broader vision of the different effects induced by LV, some of them still related to basic science speculation.
Evidence Acquisition: The Medline, EMBASE, AMED, Cochrane Library, CINAHL, Web of Science and ROAD databases were searched for animal and human neurophysiological and neurohormonal studies related to the direct effects of LV on nociceptive transmission and pain perception and were supplemented by published books and theses.
J Pain Res
August 2021
i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
Introduction: Toll-like receptor 4 (TLR4) is a pattern recognition receptor involved in the detection of pathogen-associated molecular patterns (PAMPs), but also a "danger-sensing" receptor that recognizes host-derived endogenous molecules called damage-associated molecular patterns (DAMPs). The involvement of TLR4 in rheumatic diseases is becoming evident, as well as its potential role as a target for therapeutic intervention. Moreover, increasing evidence also suggests that TLR4 is implicated in chronic pain states.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!