AI Article Synopsis

  • Mixed-acid fermentation relies on carbon and nitrogen nutrients for cell growth and metabolism, impacting carboxylic acid yields.
  • A study co-digested wastewater sludge with pretreated bagasse at different sludge proportions and temps of 55°C to explore how C/N ratios influence acid production.
  • The best yields (0.36 g acids/g VS fed) occurred at C/N ratios between 13 to 25, with acetic and butyric acids being predominant, while other acids increased as sludge content rose, suggesting higher protein breakdown.

Article Abstract

In mixed-acid fermentation, carbon and nitrogen are critical nutrients for cell synthesis, growth, and metabolism. To study the effect of C/N ratio on the yield of carboxylic acids, wastewater sludge was co-digested with pretreated bagasse; the amount of sludge was varied from 0% to 100% (dry weight basis). Fermentation was performed at 55°C at a solids concentration of 50 g dry solids/L, and Iodoform was used to inhibit methane formation. It was observed that C/N ratio significantly affects yield, especially at extreme ratios. The highest carboxylic acid yield (0.36 g acids/g VS fed) was obtained for C/N ratios ranging from 13 to 25 g C/g N. C/N ratio also affected the composition profile of carboxylic acids. In all mixtures, acetic acid was the major fraction, followed by butyric acid. However, i-butyric, valeric acid, and i-valeric acid increased with increasing sludge content, which likely resulted from protein degradation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2012.02.081DOI Listing

Publication Analysis

Top Keywords

c/n ratio
12
mixed-acid fermentation
8
wastewater sludge
8
pretreated bagasse
8
ratio yield
8
carboxylic acids
8
acid
5
influence carbon-to-nitrogen
4
ratio
4
carbon-to-nitrogen ratio
4

Similar Publications

Sustainable biomethane production from waste biomass: challenges associated with process optimization in improving the yield.

Environ Sci Pollut Res Int

January 2025

Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka Str. 2, 44-100, Gliwice, Poland.

Various novel technologies are currently under development aimed at improving bio-methane output to tackle challenges related to process stability, biogas production, and methane quality in the anaerobic digestion (AD) process. The management of substrate type, temperature, pH, hydraulic retention time (HRT), organic loading rate (OLR), and inoculum origin is essential for ensuring process effectiveness, minimizing inhibition, and maximizing production of biogas and methane yield. The review emphasizes sustainability, focusing on the environmental and economic benefits of anaerobic digestion, including the reduction of greenhouse gas (GHG) emissions, the minimization of landfill waste, and the provision of renewable energy sources.

View Article and Find Full Text PDF
Article Synopsis
  • Polyhydroxyalkanoates (PHAs) are biodegradable plastics that can be produced through a mixed culture-based process, but ammonia nitrogen can hinder this production.
  • This study explores ways to efficiently reuse ammonia nitrogen to enhance PHA synthesis and reduce waste.
  • Results showed a significant increase in PHA production when using specific substrate and process conditions, while also effectively recycling ammonia without negatively affecting the mixed culture's properties.
View Article and Find Full Text PDF

Exploring the components of soil organic carbon (SOC) and aggregate stability across different elevations is crucial to assessing the stability of SOC in subtropical forest ecosystems under climate change. In this study, we investigated the spatial variation of active carbon (C) compositions, aggregate distribution, and stability in Chinese fir (Cunninghamia lanceolata) plantations across an elevation gradient from 750 to 1150 m a.s.

View Article and Find Full Text PDF

Temperate forests cover 25% of the world's forest area and most of them are managed for timber production. To increase yields, native deciduous trees have been commonly replaced by fast-growing conifers, especially in Western and Central Europe. Despite the importance of forest soils for a variety of ecosystem functions, the effects of forest management intensity on soil biological processes have not yet been sufficiently understood.

View Article and Find Full Text PDF

Aims: Peat is used as a major ingredient of growing media in horticulture. Peat extracted from bogs can be acidic and low in nutrient availability and is therefore mixed with liming agents, nutrients, surfactants, perlite and so on. This study aims to estimate the rates at which raw peat and the modified peat ('growing media') decompose to release carbon dioxide (CO), to estimate the release of carbon (C) from liming agents and to estimate how peat biogeochemistry is changed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!