Origin and evolution of X chromosome inactivation.

Curr Opin Cell Biol

Department of Reproduction and Development, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.

Published: June 2012

Evolution of the mammalian sex chromosomes heavily impacts on the expression of X-encoded genes, both in marsupials and placental mammals. The loss of genes from the Y chromosome forced a two-fold upregulation of dose sensitive X-linked homologues. As a corollary, female cells would experience a lethal dose of X-linked genes, if this upregulation was not counteracted by evolution of X chromosome inactivation (XCI) that allows for only one active X chromosome per diploid genome. Marsupials rely on imprinted XCI, which inactivates always the paternally inherited X chromosome. In placental mammals, random XCI (rXCI) is the predominant form, inactivating either the maternal or paternal X. In this review, we discuss recent new insights in the regulation of XCI. Based on these findings, we propose an X inactivation center (Xic), composed of a cis-Xic and trans-Xic that encompass all elements and factors acting to control rXCI either in cis or in trans. We also highlight that XCI may have evolved from a very small nucleation site on the X chromosome in the vicinity of the Sox3 gene. Finally, we discuss the possible evolutionary road maps that resulted in imprinted XCI and rXCI as observed in present day mammals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ceb.2012.02.004DOI Listing

Publication Analysis

Top Keywords

evolution chromosome
8
chromosome inactivation
8
placental mammals
8
imprinted xci
8
xci rxci
8
chromosome
6
xci
6
origin evolution
4
inactivation evolution
4
evolution mammalian
4

Similar Publications

In most Eukaryota, telomeres are protected by the CST complex, composed of CTC1, STN1 and TEN1. In Drosophila, instead, another complex is present, composed of Modigliani, Tea and Verrocchio. We performed a search for STN1 orthologs in Arthropoda, in order to verify if Verrocchio can be considered as such.

View Article and Find Full Text PDF

Typhoid fever is a significant public health problem endemic in Southeast Asia and Sub-Saharan Africa. Antimicrobial treatment of typhoid is however threatened by the increasing prevalence of antimicrobial resistant (AMR) Typhi, especially in the globally successful lineage (4.3.

View Article and Find Full Text PDF

Background: Ticks, hematophagous Acari, pose a significant threat by transmitting various pathogens to their vertebrate hosts during feeding. Despite advances in tick genomics, high-quality genomes were lacking until recently, particularly in the genus Ixodes, which includes the main vectors of Lyme disease.

Results: Here, we present the genome sequences of four tick species, derived from a single female individual, with a particular focus on the European species Ixodes ricinus, achieving a chromosome-level assembly.

View Article and Find Full Text PDF

YHSeqY3000 panel captures all founding lineages in the Chinese paternal genomic diversity database.

BMC Biol

January 2025

Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China.

Background: The advancements in second-/third-generation sequencing technologies, alongside computational innovations, have significantly enhanced our understanding of the genomic structure of Y-chromosomes and their unique phylogenetic characteristics. These researches, despite the challenges posed by the lack of population-scale genomic databases, have the potential to revolutionize our approach to high-resolution, population-specific Y-chromosome panels and databases for anthropological and forensic applications.

Objectives: This study aimed to develop the highest-resolution Y-targeted sequencing panel, utilizing time-stamped, core phylogenetic informative mutations identified from high-coverage sequences in the YanHuang cohort.

View Article and Find Full Text PDF

Background: Magnesium (Mg) is essential for plant growth and development and plays critical roles in physiological and biochemical processes. Mg deficiency adversely affects growth of plants by limiting shoot and root development, disturbing the structure and membranes of the grana, reducing photosynthesis efficiency, and lowering net CO assimilation. The MGT (Magnesium transporter) family is responsible for the absorption and transportation of magnesium in plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!