Three separate genetic strategies, based upon the induced expression of three different genes (lacZ, selA and nuoA) were tested to provide the SciTox assay with sensitive and specific detection of the antibiotic tetracycline (Tet). All three strategies relied on gene induction from the Tn10 tetA promoter. Both lacZ and nuoA biosensors responded specifically and sensitively to sub-inhibitory concentrations of Tet. However, the selA-based assay was not sensitive enough to detect Tet in the SciTox assay. The detection limits for Tet of the lacZ and nuoA biosensor strains were 0.11 μg ml(-1) and 0.0026 μg ml(-1), respectively, and their linear ranges were 0.1-1 μg ml(-1) and 0-0.01 μg ml(-1), respectively. While lacZ has previously been used as a reporter gene in an amperometric bioassay, nuoA is a novel and more sensitive reporter gene. This is the first report in which a respiratory gene was used as a reporter gene in an amperometric biosensor. The results indicate that this approach can produce a highly sensitive detection system. In order to test whether the new system could be used to detect other chemicals, the nuoA gene was re-engineered to be driven by the copper-inducible copA promoter. Using this strain, the SciTox assay was found to be able to specifically detect copper and silver ions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2012.02.023 | DOI Listing |
J Mater Chem B
March 2023
Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology College of Material Science and Engineering, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha, 410082, China.
In this work, a novel method for the colorimetric sensing of α-glucosidase (α-Glu) activity was developed based on CoOOH nanoflakes (NFs), which exhibit efficient oxidase-mimicking activity. Colorless 3,3',5,5'-tetramethylbenzidine (TMB) can be oxidized by CoOOH NFs into blue-colored oxidized TMB (oxTMB) in the absence of HO. L-Ascorbic acid-2--α-D-glucopyranose (AAG) can be hydrolysed by α-glucosidase to produce ascorbic acid, resulting in a significant decrease of catalytic activity of CoOOH NFs.
View Article and Find Full Text PDFMikrochim Acta
June 2021
Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
A sensitive fluorescence strategy was constructed for the detection of α-glucosidase activity based on AgInZnS QDs. The AIZS QDs which were synthesized by hydrothermal method have a fluorescence emission wavelength of 554 nm. Ce was able to oxidize p-phenylenediamine (PPD) to generate oxPPD, which can quench the fluorescence of AIZS QDs through dynamic quenching.
View Article and Find Full Text PDFAnalyst
December 2019
Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China.
α-Glucosidase and its inhibitors play a key role in diagnosis and treatment of diabetes. In the present work, we established a facile, sensitive and selective fluorescence method based on silicon quantum dots (SiQDs) and MnO nanosheets for the determination of α-glucosidase and one of its inhibitors acarbose. The fluorescence of SiQDs was greatly quenched by MnO nanosheets due to the inner filter effect.
View Article and Find Full Text PDFAnal Chim Acta
October 2019
School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China. Electronic address:
In recent years, α-glucosidase (α-Glu) inhibitor has been widely used in clinic for diabetic and HIV therapy. Although different systems have been constructed for sensitive and selective detection of α-Glu and screening its inhibitor, the method based on ratiometric fluorescence for α-glucosidase inhibitor screening remains poorly investigated. Herein, we constructed a new MnO nanosheet (NS)-based ratiometric fluorescent sensor for α-glucosidase activity assay and its inhibitor screening.
View Article and Find Full Text PDFBr J Clin Pharmacol
November 2017
Department of Clinical Pharmacokinetics and Pharmacodynamics, Keio University School of Medicine, Tokyo, Japan.
Aim: α -Acid glycoprotein (AAG), which is a major binding protein of docetaxel, is considered to be a determinant for docetaxel pharmacokinetics. However, there are no reports about the impact of serum AAG on pharmacokinetics and pharmacodynamics in elderly patients treated with docetaxel. The aim of this prospective study was to elucidate the effects of advanced age and serum AAG on docetaxel unbound exposure and neutropenia, dose-limiting toxicity, in cancer patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!