A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of an automated system to classify retinal vessels into arteries and veins. | LitMetric

There are some evidence of the association between the calibre of the retinal blood vessels and hypertension. Computer-assisted procedures have been proposed to measure the calibre of retinal blood vessels from high-resolution photopraphs. Most of them are in fact semi-automatic. Our objective in this paper is twofold, to develop a totally automated system to classify retinal vessels into arteries and veins and to compare the measurements of the arteriolar-to-venular diameter ratio (AVR) computed from the system with those computed from observers. Our classification method consists of four steps. First, we obtain the vascular tree structure using a segmentation algorithm. Then, we extract the profiles. After that, we select the best feature vectors to distinguish between veins and arteries. Finally, we use a clustering algorithm to classify each detected vessel as an artery or a vein. Our results show that compared with an observer-based method, our method achieves high sensitivity and specificity in the automated detection of retinal arteries and veins. In addition the system is robust enough independently of the radii finally chosen, which makes it more trustworthy in its clinical application. We conclude that the system represents an automatic method of detecting arteries and veins to measure the calibre of retinal microcirculation across digital pictures of the eye fundus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2012.02.008DOI Listing

Publication Analysis

Top Keywords

arteries veins
16
calibre retinal
12
automated system
8
system classify
8
classify retinal
8
retinal vessels
8
vessels arteries
8
retinal blood
8
blood vessels
8
measure calibre
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!