Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
There are some evidence of the association between the calibre of the retinal blood vessels and hypertension. Computer-assisted procedures have been proposed to measure the calibre of retinal blood vessels from high-resolution photopraphs. Most of them are in fact semi-automatic. Our objective in this paper is twofold, to develop a totally automated system to classify retinal vessels into arteries and veins and to compare the measurements of the arteriolar-to-venular diameter ratio (AVR) computed from the system with those computed from observers. Our classification method consists of four steps. First, we obtain the vascular tree structure using a segmentation algorithm. Then, we extract the profiles. After that, we select the best feature vectors to distinguish between veins and arteries. Finally, we use a clustering algorithm to classify each detected vessel as an artery or a vein. Our results show that compared with an observer-based method, our method achieves high sensitivity and specificity in the automated detection of retinal arteries and veins. In addition the system is robust enough independently of the radii finally chosen, which makes it more trustworthy in its clinical application. We conclude that the system represents an automatic method of detecting arteries and veins to measure the calibre of retinal microcirculation across digital pictures of the eye fundus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2012.02.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!