We explored single-particle translocation through a low thickness-to-diameter aspect ratio Si(3)N(4) pore mimicking graphene nanopore structure by a resistive pulse method. Ionic conductance of 0.05 aspect ratio pores scales linearly with the diameter, indicating predominant contribution of the access resistance to the ion transport. We find that the access resistance changes little during particle translocation. Furthermore, we observe enhanced particle capture rates via the strong electric field extended outside the low-aspect-ratio pore mouth. We also demonstrate electrical discrimination of two different sized particles using the low-aspect-ratio pore sensor with the constant access resistance assumption. The present findings indicate the potential utility of nucleotide-sized graphene nanopores as an electrical sensing platform for single-base identification via transmembrane ionic current blockade detections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn300530b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!