New interferometric technique to evaluate the electric charge of gas bubbles in liquids.

Langmuir

Dipartimento di Chimica, Biochimica e Biotecnologie per la Medicina, Università di Milano, LITA, Via Fratelli Cervi 93, 20090 Segrate, Milano (MI), Italy.

Published: April 2012

We report a new interferometric technique to measure the electric charge at the gas-liquid interface of a bubble in a liquid. The bubble rests by buoyancy against an electrode, and an alternating electric field excites its capillary oscillations. The oscillation amplitude of the quadrupolar mode frequency is measured by the interferometer, and it is used to evaluate the electric charge. The mode frequency scales with the square root of the interfacial tension and with a -(3)/(2) power law as a function of the bubble radius. For bubbles in the millimeter diameter range in pure water, the measured negative charge scales with the square of the radius, hence, giving a constant surface charge density on the order of 1.8 × 10(-5) C m(-2), which is rather consistent with the electrophoretic values reported in the literature.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la3003542DOI Listing

Publication Analysis

Top Keywords

electric charge
12
interferometric technique
8
evaluate electric
8
mode frequency
8
scales square
8
charge
5
technique evaluate
4
electric
4
charge gas
4
gas bubbles
4

Similar Publications

Zinc tin oxide (ZTO) is investigated as a photoluminescent sensor for oxygen (O2); chemisorbed oxygen quenches the luminescence intensity. At the same time, ZTO is also studied as a resistive sensor; being an n-type semiconductor, its electrical conductance decreases by adsorption of oxygen. Both phenomena can be exploited for quantitative O2 sensing.

View Article and Find Full Text PDF

Metal tellurides, known for their superior electrical conductivity and excellent electrochemical properties, are promising candidates for supercapacitor applications. This study introduces a novel method involving a metal-organic framework hybrid to synthesize CoTe@CoFeTe double-shelled nanocubes. Initially, zeolitic imidazolate framework-67 (ZIF67) and CoFe Prussian blue analog (PBA) nanocubes are synthesized through an anion-exchange reaction with [Fe(CN)] ions.

View Article and Find Full Text PDF

With the rapid advancement of information technology, the need to achieve ultra-high-density data storage has become a pressing necessity. This study synthesized three hyperbranched polyimides (HBPI-TAPP, HBPI-(Zn)TAPP, and HBPI-(Cu)TAPP) by polymerizing 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (TAPP), which features a cavity for metal ion coordination, with 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA), to systematically investigate the effect of metal ion species on storage performance. According to the results, memory devices based on HBPI-(Zn)TAPP exhibit volatile SRAM (static random-access memory) characteristics, whereas devices employing HBPI-TAPP and HBPI-(Cu)TAPP demonstrate non-volatile WORM (write-once, read-many) characteristics.

View Article and Find Full Text PDF

Amorphization Stabilizes Te-based Aqueous Batteries via Confining Free Water.

Angew Chem Int Ed Engl

January 2025

Fudan University, Laboratory of Advanced Materials, Shanghai, 200433, Shanghai, CHINA.

Tellurium (Te), with its rich valence states (-2 to +6), could endow aqueous batteries with potentially high specific capacity. However, achieving complete and stable hypervalent Te0/Te4+ electrochemistry in an aqueous environment poses significant challenges, owing to the sluggish reduction kinetics, the easy dissolution of Te4+ species, and a controversial energy storage mechanism. Herein, for the first time, we demonstrate an amorphous strategy for robust aqueous TeO2/Te electrochemistry.

View Article and Find Full Text PDF

Seawater batteries (SWBs) have emerged as a next-generation battery technology that does not rely on lithium, a limited resource essential for lithium-ion batteries. Instead, SWBs utilize abundant sodium from seawater, offering a sustainable alternative to conventional battery technologies. Previous studies have demonstrated the feasibility of achieving high energy densities in SWB anodes using vertically aligned electrodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!