In spite of extensive research, assessment of potential health risks associated with exposure to low-dose (≤ 0.1 Gy) radiation is still challenging. We evaluated the in vivo induction of genomic instability, expressed as late-occurring chromosome aberrations, in bone-marrow cells of two strains of mouse with different genetic background, i.e. the radiosensitive BALB/cJ and the radioresistant C57BL/6J strains following a whole-body exposure to varying doses of (137)Cs gamma rays (0, 0.05, 0.1, and 1.0 Gy). A total of five mice per dose per strain were sacrificed at various times post-irradiation up to 6 months for sample collections. Three-color fluorescence in situ hybridization for mouse chromosomes 1, 2, and 3 was used for the analysis of stable-aberrations in metaphase-cells. All other visible gross structural-abnormalities involving non-painted-chromosomes were also evaluated on the same metaphase-cells used for scoring the stable-aberrations of painted-chromosomes. Our new data demonstrated in bone-marrow cells from both strains that low doses of low LET-radiation (as low as 0.05 Gy) are incapable of inducing genomic instability but are capable of reducing specific aberration-types below the spontaneous rate with time post-irradiation. However, the results showed the induction of genomic instability by 1.0 Gy of (137)Cs gamma rays in the radiosensitive strain only.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3299525 | PMC |
http://dx.doi.org/10.2203/dose-response.11-002.Rithidech | DOI Listing |
Sci Rep
December 2024
Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China.
Mitochondria are pivotal in cellular energy metabolism and have garnered significant attention for their roles in cancer progression and therapy resistance. Despite this, the functional diversity of mitochondria across various cancer types remains inadequately characterized. This study seeks to fill this knowledge gap by introducing and validating MitoScore-a novel metric designed to quantitatively assess mitochondrial function across a wide array of cancers.
View Article and Find Full Text PDFCrit Rev Oncol Hematol
December 2024
Pathology Unit, Department of Woman and Child's Health and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; Pathology Institute, Catholic University of Sacred Heart, 00168 Rome, Italy. Electronic address:
High-grade serous ovarian carcinoma (HGSOC) is the most aggressive subtype of epithelial ovarian cancer and a leading cause of mortality among gynecologic malignancies. This review aims to comprehensively analyze the morphological, immunohistochemical, and molecular features of HGSOC, highlighting its pathogenesis and identifying biomarkers with diagnostic, prognostic, and therapeutic significance. Special emphasis is placed on the role of tumor microenvironment (TME) and genomic instability in shaping the tumor's behavior and therapeutic vulnerabilities.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Internal Medicine, Jeju National University Hospital, Jeju-si, South Korea.
Gastric carcinoma with lymphoid stroma (GCLS) is characterized by dense intra-and peritumoral lymphocytic infiltration and a high rate of Epstein Barr Virus (EBV) infection, suggesting being a promising candidate for immunotherapy. We investigated correlations between PD-L1 expression and clinicopathologic factors, including EBV positivity and microsatellite instability (MSI) status in GCLSs. The study included resected 214 GCLSs and 300 gastric adenocarcinomas (GACs) for control.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pathology, Binzhou Medical University, Yantai, 264003, Shandong, China.
Accurate and timely genetic material replication is essential for preserving genomic integrity. The replication process begins with chromatin licensing and DNA replication factor 1 (CDT1). It has been demonstrated that dysregulated CDT1 expression causes genomic instability, damages DNA, and may even cause cancer.
View Article and Find Full Text PDFCancer Genomics Proteomics
December 2024
Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, R.O.C.;
Background/aim: The disruption of cell-cycle control can lead to an imbalance in cell proliferation, often accompanied by genomic instability, which in turn can facilitate carcinogenesis. This study aimed to examine the impact of CDKN1A rs1801270 and rs1059234 polymorphisms on the risk of childhood acute lymphocytic leukemia (ALL) in Taiwan.
Materials And Methods: The genotypes of CDKN1A rs1801270 and rs1059234 in 266 childhood ALL cases and 266 controls were determined using PCR-RFLP techniques.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!